
Integrating Edge Routing
into Force-Directed Layout

Tim Dwyer, Kim Marriott, and Michael Wybrow

Clayton School of Information Technology,
Monash University, Clayton, Victoria 3800, Australia,
{tdwyer,marriott,mwybrow}@csse.monash.edu.au

Abstract. The typical use of force-directed layout is to create organic-
looking, straight-edge drawings of large graphs while combinatorial tech-
niques are generally preferred for high-quality layout of small to medium
sized graphs. In this paper we integrate edge-routing techniques into a
force-directed layout method based on constrained stress majorisation.
Our basic procedure takes an initial layout for the graph, including poly-
line paths for the edges, and improves this layout by moving the nodes
to reduce stress and moving edge bend points to straighten the edges
and reduce their overall length. Separation constraints between nodes
and edge bend points are used to ensure that nodes do not overlap edges
or other nodes and that no additional edge crossings are introduced.

Keywords: graph layout, constrained optimisation, force-directed layout, edge
routing

1 Introduction

Researchers and practitioners in various fields have been arranging diagrams
automatically using physical “mass-and-spring” models since at least 1965 [1].
Typically, the objective of such force-directed techniques is to minimise the dif-
ference between actual and ideal separation of nodes [2], for example:

stress(X) =
∑
i<j

wij(||Xi −Xj || − dij)2 (1)

where wij is typically 1
dij

2 , Xi gives the placement in two or more dimensions
of the ith node and dij is the ideal distance between nodes i and j based on the
graph path length between them.

One of the attractive qualities of such physical models is that the physical
analogy can be easily extended to include additional aesthetic requirements by
adding additional forces between objects in the drawing. For example, to preserve
the edge crossings in an initial layout Bertault [3] added a repulsive force between
nodes and their projection points on edges, thus preventing nodes from passing
through edges during layout. This method was only applicable to layouts with

Fig. 1. A directed graph drawn us-
ing constrained force-directed layout.
Separation constraints are used to en-
sure: (1) directed edges point down-
wards; (2) selected nodes are horizon-
tally or vertically aligned; (3) the draw-
ing fits within the page boundaries;
and (4) nodes do not overlap edges or
other nodes. Allowing constraints be-
tween nodes and edges means that edge
routing criteria can also be considered,
e.g., keeping edges as straight as possi-
ble while avoiding unnecessary crossings.
The “history of unix” graph data is from
http://www.graphviz.org.

straight-line edges and point-size nodes. Brandes et al. [4] and later Finkel and
Tamassia [5] allowed the edges to bend by treating dummy nodes as control
points for splines. The problem with these methods is that the splines could not
easily be prevented from overlapping one another and creating new crossings.

Recently, the force-directed model has been extended to allow separation con-
straints of the form u+g ≤ v, enforcing a minimum gap g between the positions
u and v of pairs of objects in either the x or y dimensions in the drawing [6]. The
basic idea is to modify the iterative step in functional majorisation [7] to solve
a one-dimensional quadratic objective subject to the separation constraints for
that dimension. Previously, it has been shown that separation constraints al-
low aesthetic requirements—such as placement of nodes below other nodes in
directed graphs or containment of nodes in clusters—to be integrated into force-
directed layout [6]. In this paper we show how they can be used to take into
account aesthetic criteria involving edge routing.

Our basic procedure takes as input an initial layout for the graph including
poly-line paths for the edges and rectangular bounding boxes for the node labels
(or other text or graphics associated with nodes). This layout is then improved
by moving nodes and edge bend points so that edges are straightened and made
more uniform in length. Our approach is similar in spirit to that of Bertault,
but instead of introducing repulsive forces between nodes and edges we introduce
separation constraints between edge bend points and nodes and other edges. The
result is drawings with no overlap between nodes and edges, and which preserve
the edge crossing properties of the starting layout. Further, these drawings should
have low stress with respect to the original goal function (1) while minimizing
edge bends and overall edge length.

Our method—explored in detail in Section 2—has three main advantages
over previous approaches. First, separation constraints allow us to guarantee

that edge-edge crossings will not be introduced and that there will be no overlap
between nodes or between nodes and edges. Second, since our approach is based
on functional majorization it has better convergence properties than the earlier
approaches which were solved with iterative local-search methods similar to those
introduced by Kamada and Kawai [2] or Fruchterman and Reingold [8]. Third,
as illustrated in Figure 1, we can use additional separation constraints to enforce
other aesthetic criteria in the layout.

A key question is how to obtain the initial layout. Bertault [3] considered
input generated with a planarisation based technique [9]. Such methods seek to
find a maximal planar subgraph, draw this subgraph with no edge crossings, and
then use heuristics to reinsert edges whilst creating as few crossings as possible.1

Typically, the resulting drawings have few edge crossings but are aesthetically
displeasing, which is why techniques such as that of Bertault [3] or the earlier
simulated annealing based beautification algorithm [11] have been suggested as
post-processing steps to improve the layout. The procedure described here can
also be used for this purpose.

In Section 3 we introduce an alternative approach for obtaining the initial
layout. Our technique first positions the nodes by performing a force-directed
layout on the graph, ignoring edge routing. Next, we use the incremental connec-
tor routing library described in [12] to find the connector routes that minimize
edge length and amount of bend. We then iteratively improve this using a simple
greedy heuristic, re-routing the edges with the largest number of crossings to re-
duce crossings as long as this does not lead to very long edges or a large number
of bends, as seen in Figure 7. The advantage of our technique is that the heuris-
tic considers number of edge crossings, edge length, number of bends and degree
of “bendiness.” Clearly, all of these measures are important [13, 14] and since
there is a trade-off between them it is important to consider them together. As
far as we know this is the first approach to do so since previous approaches have
either been planarization based and only considered the number of crossings [9],
or have not considered crossings at all [15, 16, 12].

2 Modelling Edge Routing in Force-directed Layout

We assume as input a graph G = (V,E) and a layout for the graph. Each node
v ∈ V has a bounding box of dimensions given by width(v) and height(v), and
each edge e has a minimum width width(e). The routing for each edge consists of
a curved or piece-wise linear path between and around node bounding boxes. We
use the functions xpos(e, h) which returns a list of intersection points between
the edge e and the line y = h; top(e) and bottom(e) which return the topmost
and bottom-most coordinate, respectively, through which e passes. The functions
ypos(e, h), leftlimit(e) and rightlimit(e) are defined symmetrically.

1 Of course there is no guarantee that such reinsertion strategies produce a drawing
that is optimal with respect to crossings since the general crossing minimisation
problem is NP-complete [10].

Fig. 2. The bend b1 will be
straightened to its projection
point on the line p1b2, e.g., in
the x-dimension, to x1. Bend
b2 will be similarly straightened
towards the line b1p2. The po-
tential bend points a1 and a2

will be straightened to the line
segment between actual bend
points or the ends of the line,
i.e., a1 will be straightened to
the line segment p1b1.

Recall from [7] that in functional majorisation the value of the stress func-
tion (1) is reduced by alternately minimising quadratic forms in the horizontal
and vertical axes that bound the stress functions:

xT Lx− lTx x , yT Ly − lTy y (2)

where: x and y are |V | dimensional vectors of node positions in each axis; the
|V |× |V | Hessian matrix L is the graph Laplacian; and the linear arguments lx,y

are computed before processing each axis based on the difference between ideal
separation of nodes and their actual separation at the current placement (for
details see [7]).

The input to our new layout problem includes bend points for some edges.
Ideally we would like such edges to be straightened while still satisfying the
original node separation objectives of the goal function and without creating
any node/edge, node/node intersections.

Consider a bend point b = (xb, yb) on a line from p1 = (x1, y1) to p2 =
(x2, y2). The minimal change to the position of b which straightens the line is to
move b to its projection pb on to the line p1p2. We let tb be distance of pb along
p1p2, that is, pb = p1 + tb(p2 − p1) where tb = p1b·p1p2

||p1p2||2 (from the dot product
rule for scalar projection) Since all paths have minimal length and bends we
have that the projection point must lie between p1 and p2, i.e. that 0 ≤ tb ≤ 1 .

So for an edge (vi, vj) ∈ E with one bend at position b we can straighten
the edge when moving vertices and bend points horizontally by minimising
f(xi, xj , xb) = (xb − (1 − tb)xi − tbxj)2. If an edge is routed through multiple
bend points b[1], b[2], ..., b[n] we can straighten all bends by minimising:

f(xi, xb[1], xb[2]) +
n−1∑
k=2

f(xb[k−1], xb[k], xb[k+1]) + f(xb[n−1], xb[n], xj)

and similarly, when placing points vertically, we will straighten edges by min-
imising an equivalent set of expressions over y. This is illustrated in Figure 2.

(a) Identifying bends and potential
bends for horizontal placement

(b) A complex set of constraints generated
by the opening of node v

Fig. 3. Examples showing the separation constraints (dashed arrows) required to pre-
vent the creation of new node/node and node/edge crossings when moving nodes hor-
izontally.

In summary, for the three variables u, v, b involved in each bend b, we have
f(u, v, b) = (u, v, b)T H(u, v, b) where

H(f(u, v, b)) = ∇2f(u, v, b) = 2 ·

 (1− tb)2 tb(1− tb) tb − 1
tb(1− tb) t2b −tb

tb − 1 −tb 1

 (3)

Thus, if B is the set of bends (or potential bends, as will be discussed later) we
have to define |B| new variables and to redefine the goal functions (2) in terms of
m = |V |+ |B| variables. We define a new matrix A that contains the quadratic
terms for each bend and the ideal node separation terms of the graph Laplacian:

A = L′ +
∑
b∈B

Ab (4)

where L′ is an m ×m matrix with the top-left |V | × |V | cells set to L and the
remaining cells 0; for each bend b ∈ B, Ab is a symmetric matrix with the 9
cells corresponding to the variables u, v, b set to the entries in H(f(u, v, b)) as
above and all other cells 0. This gives us a new goal function to minimise in each
dimension. For example in the x dimension we have:

xT Ax + l′T x (5)

Where the linear terms in (2) are unaffected by the new quadratic terms so l′ is
simply an m-vector s.t. l′ = [l|0, . . .]. It is simple to prove that A is symmetric
and positive semi-definite meaning that efficient convex optimisation methods
such as the gradient-projection method described in [6] are applicable. Further,
since each bend point requires only a small number of entries in the A matrix the
complexity of the optimisation process will increase only linearly in the number
of additional bend variables when a sparse matrix data-structure is used.

We solve this quadratic objective subject to a set of separation constraints.
These constraints prevent: bend points and hence edges from overlapping any
node’s bounding box; nodes overlapping one another; bend points passing through

another edge and so increasing the number of edge crossings; and guarantee a
minimum separation between parallel edges.

Figure 3 shows the constraints generated for when moving nodes horizon-
tally. Notice that additional bend points are introduced in some straight edge
segments. A new bend-point is created wherever the top or bottom of a node
is visible from that segment where nodes restrict visibility but edges do not.
We distinguish between the original active bends and these additional potential
bends. We only want an edge to bend at a potential bend point if the node asso-
ciated with that bend point (which is currently not touching the edge) is moved
as a result of straightening other edges and collides with the edge. We therefore
straighten potential bend points to the line segment between active bend points
(see Figure 2) and weight them significantly more than active bend points, to
avoid introducing new bends where possible.

Figure 4 gives an algorithm for generating these constraints for the x-direction:
the code for the y-direction is symmetric. We generate the constraints using
a line-sweep algorithm related to standard rectangle overlap detection meth-
ods [17] and the non-overlap constraint generation algorithm [18]. To generate
horizontal constraints, we perform a vertical sweep through the nodes and edges,
keeping a horizontal “scan line” list of open nodes sorted by horizontal position
and an unsorted list of open edges. When the scan line reaches the top of a new
node, v, this is added to the list and its left and right node neighbours, l and
r, are computed. The function neighbourhood x constraints searches along the
scan line at y between l and r for intersections with open edges. Bend variables
are created at these intersection points and constraints are generated between
them. Constraints between edges and the nodes to which they are connected
should not be generated or else edges may become “wrapped” around their end-
points. We therefore consider several cases for constraint generation. Case A
generates constraints between adjacent bend points for edges not connected to
l, r or v. Case B considers edges to the right of l or v, skipping those edges
connected to l or v, and Case C similarly handles edges to the left of v or r.
These three cases are illuminated in Figure 3(b).

The worst-case time complexity of procedure generate x constraints(V,E) is
O(|V |(|V |+ |E| log |E|)) and it will generate O(|V | · (|V |+ |E|)) constraints.

3 Computing the Initial Layout

The algorithm given in the previous section requires an initial layout including
node positions and poly-line routes for edges. One approach is to use a planari-
sation based technique [9]. These seek to find a maximal planar subgraph, draw
this in a planar way, and then reinsert edges whilst producing few crossings.
However, algorithms for drawing strictly planar graphs (or subgraphs) generally
require further refinement and so our algorithm can be used for this purpose. An
example is shown in Figure 8. We have also explored an alternative approach for
obtaining the initial layout and edge routing. This is novel, so we describe it in
more detail. It has four main steps.

procedure generate x constraints(V, E)
C ← ∅
Events ← {(top(v), Open, v), (bottom(v), Close, v)|v ∈ V }
∪{(top(e), Open, e), (bottom(e), Close, e)|e ∈ E}

sort Events by decreasing y position
OpenNodes is maintained in order of each node’s x position
OpenNodes← ∅
OpenEdges← ∅ % OpenEdges is unordered
for each (y, type, obj) ∈ Events do

if obj is a node then
v ← obj
l← first node to left of v in OpenNodes
r ← first node to right of v in OpenNodes
Z ← Z∪neighbourhood x constraints(v, l, r, y, OpenEdges)

if type = Open then
if obj is a node then

insert(obj,OpenNodes,xpos(obj))
else if obj is an edge then

add obj to OpenEdges
endif

else if type = Close then
delete obj from OpenNodes / OpenEdges

endif
endfor

return Z

procedure neighbourhood x constraints(v, l, r, y, OpenEdges)
If l (or r) is unspecified we say l(or r) = 0 and include all edges to the left (or right) of v.
L← ∅, minx = −∞
if l 6= 0 then

L← {l}, minx = xpos(l)
endif
L← L ∪ {dummyNode(e, x, y)|e ∈ OpenEdges ∧ x ∈ xpos(e, y)
∧ minx < x < xpos(v) ∧ e is not connected to l or v} ∪ {v} ∪ . . .

. . . similarly add dummy nodes for edges between v and r including r (if r 6= 0)
uA ← uB ← uC ← 0
for each w ∈ L in ascending xpos order do

A: if edge(w) ∧ ¬end(w) ∈ {v, l, r} then
if uA 6= 0 then

Z ← Z ∪ {xpos(uA) + (width(uA) + width(w))/2 ≤ xpos(w)}
uA ← w

else if node(w) then
uA ← 0

endif
B: if edge(w) then

if isend(uB , edge(w)) then
skipList← skipList ∪ {w}

else
for each s ∈ skipList do

Z ← Z ∪ {xpos(s) + (width(s) + width(w))/2 ≤ xpos(w)}
skipList← ∅

endif
else if node(w) then

skipList← {w}
uB ← w

endif
for each w ∈ L in descending xpos order do

C: # symmetrical to B
May need to also generate constraints l, v and v, r if necessary

return Z

Fig. 4. Vertical scan algorithm to create a set Z of constraints to prevent node/edge
or node/node overlap when moving nodes horizontally. The procedures gener-
ate y constraints and neighbourhood y constraints for the horizontal scan are symmet-
rical. Constraints generated for the three distinct cases A, B and C are illustrated in
Figure 3(b).

The first step is to position the nodes by performing a force-directed layout
on the graph, ignoring edge routing. A method such as [18] can be used to remove
node overlap, allowing edges to be routed between neighbouring nodes.

Step two is to use the incremental poly-line connector routing library de-
scribed in [12] to compute poly-line routes for each edge, which minimise edge
length and amount of bend. This is done by constructing a visibility graph for
the nodes, itself containing a node for each vertex of the bounding box of each
node in the original graph. The visibility graph contains an edge between two
nodes iff they are mutually visible, i.e., there is no intervening obstacle. Next,
the edge paths are routed using an A? based-search to find the best route for
each edge. The cost of routing each edge is O((|E| + |V |) log |V |) where |E| is
the number of edges in the visibility graph.

Step three uses a simple greedy heuristic to reduce the number of edge cross-
ings. Each edge with crossings is considered once, in decreasing order of crossings.
Again we use an A? based-search to find the best route for each edge, though this
time the cost includes a penalty for each crossing. The cost of routing each edge
taking into account edge-crossings is currently O(|S|(|E|+|V |) log |V |) where |E|
is the number of edges in the visibility graph and |S| the number of segments in
the routed edges.

The penalty for an edge route is simply the sum of the penalties for its
segments where the penalty for an edge segment is given by:

cost = l + αs +
βa log(a + 1)

10
+ γscc (6)

where: α, β, γ are user specifiable penalties for, respectively, the segment penalty,
the angle penalty and the crossing penalty. l is the length of the segment. a is
the angle away from a straight line that this segment makes with the previous
segment, scaled to the range 0 ≤ a ≤ 10, therefore a = 0 means the two segments
make a straight line. If this is not the first segment and a > 0, then s = 1,
otherwise s = 0. Finally, scc is the number of crossings for the segment.

The penalty function incorporates the three main features of poly-line edge
routing that have been shown to affect user comprehension: edge length, num-
ber of bends and degree of bendiness [14]. The ability to use a flexible penalty
function allows us to adjust the initial routing to match the desired combination
of aesthetic criteria and their tradeoffs. Setting a very high penalty for crossings
will produce routings with few crossings but this is not always ideal. By reducing
the penalty we produce more pleasing routings such as the one shown in Fig-
ure 7(b). In this case, the four crossings at the perimeter are avoided but the one
in the middle is allowed since it would otherwise result in a path of significantly
greater length and amount of bendiness.

Finding poly-line edge crossings for a graph is not as simple as just deter-
mining the intersections between the segments of all edge paths. It is common
for edges to bend around the same node corner or to share paths for part of their
route, i.e., running along the same paths in the visibility graph. In these cases
we want to distinguish between situations where they cross and where they only

(a) Initial force-directed
layout

(b) Edges rerouted to re-
duce crossings

(c) After straightening
edges

Fig. 6. A small example showing the main steps in our layout process.

touch or run parallel. We do this by comparing the order of edges entering and
leaving shared paths or common bend points.

Since the length of the shared path has no effect on whether the two edges
cross, we can treat bend points equivalently to shared paths. We start by looking
for cases where the segments of two edges have a single shared endpoint. This
is the beginning of a shared path or a common bend point. Such bend points
always pass around the corner of a node, so we determine the order of edges
entering the shared path at this point by finding which edge runs closest to the
node. From here we follow the common segments along the shared path until
they diverge again. We then determine the order of edges leaving the shared
path, taking into account features of the bends such as the winding directions.

Fig. 5. An exaggerated example of the
nudging we perform on shared edge
bend points.

If the two orders are different then we can
tell that the edges cross along the shared
path, rather than running parallel.

Finally, in step four, line segments are
adjusted to slightly separate edges routed
around the same corner of a node. This
involves nudging the bend points of edges
along shared paths, or at the points they
cross or touch, as shown in Figure 5. To do
this a sorted order for each of these points
and shared paths is kept when determin-
ing crossings. This nudging step prevents
the creation of additional edge crossings
during the layout step.

4 Discussion

Figure 6 demonstrates how the edge routing and straightening procedures are ap-
plied in practice. We begin with the output of an unconstrained stress-majorisation
layout in which edge routing is ignored. Edges are all close to their ideal length
thus minimising (1). We apply edge routing as described above, penalising routes
with crossings. A planar layout is obtained but with longer edges and a number
of bends. Constraints are then generated using the algorithm from Figure 4 and
the stress majorisation layout is rerun subject to these constraints. The result
retains the planar layout but the edges are straightened.

(a) Initial force-
directed layout

(b) Edges routed to pe-
nalise crossings

(c) With edge straightening

Fig. 7. An example graph from Kamada-Kawai [2].

(a) Output of a planar graph layout algorithm (b) With edge
straightening

Fig. 8. Applying edge straightening to the output of a planar layout algorithm.

Figure 7 shows an example graph from Kamada and Kawai [2]. Note that the
graph is planar, yet our routing allows one crossing to remain because removing
the final crossing would require a very long edge. The result is a layout with more
consistent edge length and greater symmetry than a completely planar drawing
would permit.

Figure 8 shows the result of applying the edge straightening method directly
to the output of a typical planar graph layout algorithm. The layout is consid-
erably compacted by allowing edges to bend while the edge routing topology is
preserved. Note that the layout is somewhat compressed by the requirement to
preserve the ideal distance between two nodes on the outer face that have fin-
ished up on opposite sides of the drawing. This could perhaps be alleviated by
a further refinement step that relaxed ideal distances between nodes connected
by an edge following a long route.

Our final example in Figure 9 is more typical of the type of graphs encoun-
tered in actual applications, namely: nodes have variable size bounding boxes
depending on the labels required; there are many more edges than our previ-
ous examples; and there are a small number of nodes of high degree, e.g., the

(a) Initial force-directed lay-
out: 43 crossings

(b) With edges routed to pe-
nalise crossings and straight-
ened: 18 crossings

(c) With additional con-
straints to require downward
pointing edges: 26 crossings

Fig. 9. A more realistic graph visualisation application (a Bayesian net).

two highest degree nodes have 19 and 8 connections. In Figures 9(b) and 9(c)
edges that share a common path have been separated using the method de-
scribed in Section 3. Note that we have not applied such a separation where
edges share a common end point—the main goal of nudging being to disam-
biguate routes that come together and then diverge. Figure 9(c) demonstrates
how other constraints—in this case downward pointing directed-edges—can be
used in addition to edge straightening constraints. This is also demonstrated in
the example shown in Figure 1.

The entire process, including computation of the initial layout, routing of all
edges and then the straightening phase takes only a few seconds for each of the
examples shown.

5 Conclusion and Further Work

Extending stress majorisation techniques to handle separation constraints allows
us to naturally handle a wide number of aesthetic criteria and drawing conven-
tions. Here we have shown that separation constraints allow edge routing to be
integrated into force-directed layout. The precise encoding is not obvious, and
relies on using separation constraints in combination with a modification to the
one-dimensional quadratic objective function to essentially model an arbitrary
linear inequality.

Another contribution of the paper is to present a simple heuristic for finding
poly-line edge routes that tries to minimise the number of edge crossing while
still taking into account the edge length and degree of bendiness. There has
been surprisingly little research into such heuristics and we believe that there is
considerable scope for further work.

We think it is significant that our algorithm can be used to improve layouts
obtained with planarization based methods. We plan to further explore how
force-directed layout can be combined with such combinatorial techniques.

References

1. Fisk, C.J., Isett, D.D.: ACCEL: automated circuit card etching layout. In: DAC’65:
Proceedings of the SHARE design automation project, ACM Press (1965) 9.1–9.31

2. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs.
Information Processing Letters 31 (1989) 7–15

3. Bertault, F.: A force-directed algorithm that preserves edge crossing properties. In:
Proc. 7th Int. Symp. on Graph Drawing (GD’99). Volume 1731 of LNCS., Springer
(1999) 351–358

4. Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection
data. In: Proc. 6th Int. Symp. on Graph Drawing (GD’98). Volume 1547 of LNCS.,
Springer (1998) 44–56

5. Finkel, B., Tamassia, R.: Curvilinear graph drawing using the force-directed
method. In: Proc. 12th Int. Symp. on Graph Drawing (GD’04). Volume 3383
of LNCS., Springer (2004) 448–453

6. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. In: Proc. IEEE Symp. on Information
Visualisation (Infovis’06). (To appear 2006)

7. Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Proc.
12th Int. Symp. Graph Drawing (GD’04). Volume 3383 of LNCS., Springer (2004)
239–250

8. Fruchterman, T., Reingold, E.M.: Graph drawing by force-directed placement.
Software - Practice and Experience 21 (1991) 1129–1164

9. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
In: SODA ’01: Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms,
Society for Industrial and Applied Mathematics (2001) 246–255

10. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. Journal of Algebraic
Discrete Methods 4 (1983) 312–316

11. Harel, D., Sardas, M.: Randomized graph drawing with heavy-duty preprocessing.
In: AVI ’94: Proceedings of the Workshop on Advanced Visual Interfaces, New
York, NY, USA, ACM Press (1994) 19–33

12. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Proc.
13th Int. Symp. on Graph Drawing (GD’05). Volume 3843 of LNCS., Springer
(2006) 446–457

13. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In:
Proc. 4th Int. Symp. on Graph Drawing (GD’96), Springer (1996) 435–446

14. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information Visualization 1 (2002) 103–110

15. Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a general-
purpose edge router. In: Proc. 5th Int. Symp. on Graph Drawing (GD’97). Volume
1353 of LNCS., Springer (1997) 262–271

16. Freivalds, K.: Curved edge routing. In: Proc. of the 13th Int. Symp. on Fundamen-
tals of Computation Theory (FCT ’01). Number 2138 in LNCS, Springer (2001)
126–137

17. Preparata, F.P., Shamos, M.I. In: Computational Geometry. Springer (1985) 359–
365

18. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. In: Proc. 13th
Int. Symp. on Graph Drawing (GD’05). Volume 3843 of LNCS. (2006) 153–164

