
Exploration of networks using overview+detail with
constraint-based cooperative layout

Tim Dwyer, Kim Marriott, Falk Schreiber, Peter J. Stuckey, Michael Woodward and Michael Wybrow

Abstract— A standard approach to large network visualization is to provide an overview of the network and a detailed view of a small
component of the graph centred around a focal node. The user explores the network by changing the focal node in the detailed view
or by changing the level of detail of a node or cluster. For scalability, fast force-based layout algorithms are used for the overview and
the detailed view. However, using the same layout algorithm in both views is problematic since layout for the detailed view has different
requirements to that in the overview. Here we present a model in which constrained graph layout algorithms are used for layout in
the detailed view. This means the detailed view has high-quality layout including sophisticated edge routing and is customisable by
the user who can add placement constraints on the layout. Scalability is still ensured since the slower layout techniques are only
applied to the small subgraph shown in the detailed view. The main technical innovations are techniques to ensure that the overview
and detailed view remain synchronized, and modifying constrained graph layout algorithms to support smooth, stable layout. The key
innovation supporting stability are new dynamic graph layout algorithms that preserve the topology or structure of the network when
the user changes the focus node or the level of detail by in situ semantic zooming. We have built a prototype tool and demonstrate its
use in two application domains, UML class diagrams and biological networks.

Index Terms—Graph drawing, constraints, stress majorization, force directed algorithms, multidimensional scaling.

1 INTRODUCTION

Scalability is a key issue for network visualisation paradigms. Ex-
amples of very large network datasets abound: biological pathways
mapping out complex processes in living organisms; large social net-
works available through on-line resources like Facebook;1 or even the
World-Wide Web itself. While it may be useful to look at small sub-
networks in isolation, increasingly data is available to provide context
in the form of a much larger neighbourhood. We believe an inter-
active system for exploring such data should provide flexible tools
for interactively filtering and aggregating large networks to obtain a
more manageable sub-network most relevant to a particular task; see
e.g. [30]. However, both during and after the query and filtering pro-
cess the most common way to visualise network connectivity is as a
classic node-link diagram. For this representation to convey informa-
tion as effectively as possible, good layout is crucial.

There are a number of techniques for creating high-quality layout
for small networks (fewer than 100 nodes). However, these algorithms
do not scale up to larger networks (see §2.2). For this reason, much
recent work on network layout has focused on applying the popular
force-directed layout approach to very large graphs with hundreds or
thousands of nodes in reasonable time. While these techniques are fast
and are designed to reveal the overall structure of the network, they do
not cater for the layout aesthetics that are important in a detailed view
such as non-overlapping nodes and high-quality edge routing.

In this paper we couple these two kinds of layout to provide an
overview to show context—using a high-speed layout method—and a

• Tim Dwyer is a visiting researcher at Microsoft Research, E-mail:
t-tdwyer@microsoft.com

• Kim Marriott and Michael Wybrow are with Monash University, Australia,
E-mail: {Kim.Marriott,Michael.Wybrow}@infotech.monash.edu.au

• Falk Schreiber is with IPK-Gatersleben, Germany,
E-mail: schreibe@ipk-gatersleben.de

• Peter J. Stuckey is with National ICT Australia and the University of
Melbourne, Australia, E-mail: pjs@csse.unimelb.edu.au

• Michael Woodward is with the University of Melbourne, Australia,
E-mail: wmg@csse.unimelb.edu.au

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

1http://www.facebook.com/

detailed view using a slower, higher-quality layout algorithm. As well
as providing scalability, the use of two different layout engines re-
flects that these two views have quite different aesthetic requirements.
Our aims—largely based on previous research on interactive visual-
ization of networks—when developing our model and the associated
visualization tool were: Scalability—support for interactive visualiza-
tion of very large graphs with thousands of nodes; Synchronization—
the overview and detailed layouts must remain synchronized; High
quality layout—layout in the detailed view should satisfy widely ac-
cepted graph drawing aesthetics; Customizable—the user can impose
application specific layout conventions and also so that they can cre-
ate landmarks for better navigation; Levels of Detail (LOD)—where
available in the network or in the textual or graphical content of
nodes, LOD should be navigable through in-situ semantic zooming;
Stability—the basic structure of the layout should remain stable as the
detailed view moves about the network and also during changes of
LOD; Continuity—there should be a smooth, continuous transition to
new layouts during interaction.

Because of the desire to support high-quality, customizable layout
in the detailed view, we decided to use a constrained graph layout
method in combination with automatic connector routing. It supports
non-overlapping node labels, nested sub-graphs (clusters), and high
quality poly-line connector routing. Importantly for our application,
it also allows the user to specify additional constraints such as down-
ward pointing edges, distribution alignment and minimum separation
constraints between nodes in the network. These allow the user to cus-
tomize the presentation to their particular application specific style.

Our previous constraint-based network layout was based on a tech-
nique called constrained stress majorization [9]. However, after work-
ing with constrained stress majorization in an interactive context we
found it had a number of limitations that were not easily overcome.
Thus, in this paper we present a new optimisation method based on
gradient projection and Runge-Kutta integration, which is more eas-
ily extensible to different goal functions, and a new path-based force
model called P-stress. This new force model removes long range at-
tractive forces between loosely connected parts of the network and
adds forces which consider all the line segments in an edge routing
and act to minimise the total path length of that routing which leads to
better layout with poly-line connectors.

One of the major benefits of our new approach is that it preserves the
topology of the network during layout. This means that while nodes
and connectors can move if this leads to better layout, they cannot
move through each other to change the inherent topological structure

of the layout. This helps to keep the layout stable during online ex-
ploration when the user changes the focus node or the level of detail
(LOD) by in situ semantic zooming. A byproduct of using such topol-
ogy preserving layout is that it allows natural handling of clusters since
topology preservation means that cluster boundaries remain inviolate.

In order to handle very large networks in the overview we use a fast
multi-pole method for layout which is the state-of-the-art for simu-
lating large N-body problems; of which the incremental force-directed
network layout problem is effectively an instance. It is not possible for
this layout method to support the full gamut of constraints provided in
the detailed view without making it impractically slow. Instead, we
show that simple fixed-position constraints are sufficient to require the
contextual view to reflect the layout modifications applied at the de-
tailed level. As the user—or users in a collaborative environment—
explore the larger network their local layout refinements (either au-
tomatic or through directed constraint inferencing) are gradually re-
flected in the holistic layout of the overview.

2 BACKGROUND

2.1 Interactive exploration of large networks
An early formal description of the on-line graph drawing problem is
given by Eades et al. [12]. They describe a system in which users navi-
gate through a large graph by selecting a focal node. This focal node is
centred on the display and a subgraph of a predefined graph-theoretic
radius is expanded around that node. They used a basic Fruchterman-
Reingold [18] force-directed approach for layout where the iterations
in the layout process are used as key-frames for animation as the sub-
graph is updated following a change of focal node. This general mode
of on-line graph navigation has been revisited on numerous occasions.
It has, for example been extended to hierarchical navigation of clus-
tered graphs [13]; used in a 3D visualisation of WWW browsing [5];
updated with a more scalable Barnes-Hut force-model and applied to
social network navigation [25]; and it has also appeared in a commer-
cial tool for navigating Google and Amazon search results.2

There has been considerable research into the underlying interac-
tion issues that need to be considered in a general on-line network
navigation system and which have guided the development of our tool.

Overview+detailed view: Graph viewing systems such as yEd3

and Cytoscape4 make use of an overview window to show the entire
network and also a main window with a detailed view of part of the
network. Unlike our system, the detailed view is simply a zoomed in
view of the overview. This means that quality of the detailed view is
restricted by the need to ensure scalability of the layout method for the
overview. Furthermore, the network layout in these systems is static,
and is not updated in response to user interaction or to optimise the
part of the graph that is visible in the detailed display. The model we
explore in this paper supports such local optimisations while reflect-
ing all such local changes in the overview display in a synchronized,
coordinated way.

Continuity: The on-line graph drawing paradigm seeks to make
layout locally optimal for a small focal sub-graph, but when chang-
ing layout dynamically in response to user navigation events there are
many lessons to be learned from related tasks in the information visu-
alisation design space. Animation is known to be very useful in sup-
porting the user’s mental map through transitions of display focus [3].

Stability: Plaisant et al. [31] investigated interactive exploration
of large tree structures. While finding readable layout for trees is
much easier than general graphs, their results concerning interaction
remain applicable. In particular, they found in their user study that
users were more easily able to find already visited nodes if the layout
surrounding those nodes remained consistent from visit to visit. Thus,
when navigating to a new focal node the part of the visible subgraph
that remains on the screen should not be radically altered. Further,
when re-displaying a previously visited node, its position relative to
the structure around it should be recognisable [31].

2http://www.touchgraph.com/
3http://www.yfiles.com/producs/yed/
4http://www.cytoscape.org/

There has been considerable interest in developing techniques for
stable graph layout that preserve the user’s mental model of the
graph [28]. These techniques are quite specialized to the underly-
ing layout algorithms. The standard approach for supporting stability
in force-directed approaches is to simply add a “stay force” on each
node so that it does not move unnecessarily, e.g. [17]. In the case of
orthogonal graph layout, stability is gained by trying to preserve the
current bend points and angles, e.g. [6]. This has the effect of pre-
serving the layout topology. Finally, North and Woodhill [29] have
given algorithms for preserving the current horizontal and vertical or-
dering between nodes in dynamic Sugiyama-style layered layout. Our
approach is the first that we are aware of to base stability on topology
preservation in a force-directed style layout. It has the advantage over
stay forces that the layout is better able to adjust to changes while still
preserving the original structure.

Customized landmarks: Ware [38] gives extensive guidelines for
navigation of large “abstract data spaces”. His focus is on navigation
in 3D environments but the guidelines drawn from numerous stud-
ies on wayfinding also apply to extended 2D environments, for exam-
ple: “...cognitive spatial maps form easily and rapidly in environments
where the viewer can see everything at once... The practical applica-
tion of this is that overviews should be provided wherever possible in
extended spatial information spaces.” (p.331). Ware also discusses the
importance of providing landmarks to support wayfinding tasks.

In-situ zooming: Distortion-oriented techniques [27] are well ac-
cepted as providing in-situ zooming in information displays. So called
“fisheye” techniques [19] were quickly extended to graph visualiza-
tion [34]. More recent interest in this area has concentrated on se-
mantic zooming of information by means of dynamic expansion of
clustered graphs [20, 37]. While these methods show promise, both
may introduce edge crossings as various levels of detail are exposed or
elided. Thus these methods potentially violate the fisheye or “rubber-
sheet” metaphor since they are not guaranteed to preserve topology. In
this paper we explore a new method which guarantees preservation of
topology of the surrounding network layout when individual nodes or
subgraphs are expanded to show more detail.

2.2 Layout of large and small networks
We note that there is a divide between graph layout methods which
work well for small and simple networks5 and those which are able
to produce layouts for networks with hundreds or thousands of nodes
in reasonable time. A very popular method for layout of small and
simple directed graphs is the Sugiyama layered layout method [35].
This method is able to produce layouts with mostly downward point-
ing directed edges and no overlap between nodes and edges. There
has also been some effort to ensure that Sugiyama methods can run
very fast for large graphs [15]. However, regardless of run-time, it has
been shown that when applied to larger graphs this method is poor at
showing the large-scale structure of the network [8]. Another family
of layout methods which produce reasonably high quality layout for
small and simple graphs and which have received much attention from
graph drawing researchers is orthogonal layout [14]. Orthogonal lay-
out is also able to produce layouts without overlap between nodes and
edges and to produce layouts with minimal crossings between edges.
Again, however, the layout for larger graphs often obscures overall
structure, e.g. see Fig. 1.

Constrained force-directed layout has been introduced as a method
for obtaining high-quality layout with non-overlapping nodes and
edges and other constraints for capturing various application specific
drawing conventions, with the advantages of force-directed layout
such as more uniform edge lengths [9]. Unfortunately, the run-time
scales poorly in the number of constraints.

On the other hand there has been much effort to develop fast layout
methods for very large graphs. Hachul and Juenger give a good survey
and comparison of the fastest techniques in [23]. To briefly summa-
rize, they found that Eigen-projection methods are fastest but perform

5What is meant by “small and simple” is very dependent on the application
and network structure, but, for example, let us assume we mean networks with
around 50 nodes and most nodes having degree less than around 10

(a) Force-directed (b) Layered (c) Orthogonal

Fig. 1. Three popular methods for “high-quality” layout of relatively small
graphs applied to a “Sierpinski triangle” graph with 123 nodes and 243
edges. Produced using the y-Ed software with default settings for the
three layout styles. Moderate size examples where the combinatorial
layout methods do not show large scale structure are easy to find.

poorly for treelike structures, while multiscale force-directed methods
give a reasonable compromise between speed and quality.

Our approach attempts to overcome the different requirements for
large scale layout (showing overall graph structure and speed) and
small scale layout (high quality layout where every node and edge
is easily visible), by marrying the two different approaches in an
overview+detail display. Various choices could be made for the two
layout methods but we are guided in our choice by the requirements
for interactive navigation outlined in the previous section.

3 BASIC VISUALIZATION MODEL

Based on the classic overview+detail visualization model, the core in-
novation in our network exploration paradigm is that we use a slower,
higher quality layout algorithm for layout of a small subset of the
graph called the primary graph (which includes the sub-graph dis-
played in the detailed view) and a high-speed layout method for the
remainder of the graph which is called the secondary graph. The user
navigates through the network by repeatedly selecting a focal node.
Nodes from a neighbourhood around the focal node are added to the
primary graph until a threshold number of nodes is reached. The high-
quality layout is updated and the focal node is centred in the detailed
view. Updating of the high-quality layout is done in isolation from
the overall layout and only considers the nodes in the primary graph,
although the starting point for the layout is the position of the nodes
in the secondary graph. After this the layout for the secondary graph
is updated using the fast network layout technique. This takes account
of the positions of the nodes in the primary graph layout but is not
allowed to move them.

Of course the primary graph is not allowed to become too large
(e.g. > 50 nodes) since this would defeat the aim of using fast layout
techniques for most of the graph. We restrict its size by removing the
nodes that are the furthest in graph-theoretic terms from the current
focus node and were the last to be focus nodes. In order to ensure
stability of layout, we cache the nodes’ associated constraints and the
routing for their associated edges and cluster boundaries. These are
restored if the nodes come back into the primary graph.

We have elected to use a constrained graph layout method in com-
bination with automatic poly-line connector routing for layout in the
detailed view. This is a generic layout technique that provides high
quality layout and also allows the viewer to tailor the layout in the
detailed view by imposing placement constraints on the layout. The
relationship is maintained in subsequent interaction until the author
explicitly removes it. The great advantage of placement constraints
over explicit positioning of nodes is that while they allow the author
to control the layout, they still allow the layout to adjust sensibly to
future interaction such as LOD changes.

A significant benefit of allowing constraints to be placed on the
layout is that the user can use these to improve navigation through
the network by for instance aligning nodes in an important metabolic
pathway, or orthogonalising the layout and so creating landmarks to
guide their subsequent exploration [38]. In order to facilitate this, our
tool provides two high-level styling tools that generate placement con-

straints designed to make the layout more memorable by highlighting
the largest cycles in a directed graph and by orthogonalising the layout.

Our visualization tool allows the user to change the LOD shown in
an individual node, i.e. resizing the node label. They can also change
the LOD in the network by choosing a cluster, i.e. a hierarchical col-
lection of nodes, to be expanded or collapsed in the detailed view.

Example sessions with the tool are shown in Figures 4 and 5. In the
next two sections we detail the layout algorithms used in our tool.

4 DETAILED DISPLAY

Our system utilizes so called constrained graph layout algorithms for
layout of the primary graph [24, 8, 9]. These are related to the more
common force-directed graph layout algorithms. Like force-directed
methods, they find a layout minimizing a goal function such as stress.
However, unlike force directed methods, constrained graph layout al-
gorithms allow the goal to be minimized subject to placement con-
straints on the allowed layouts. To do so, they use sophisticated con-
strained optimization techniques to ensure that the generated layouts
satisfy the constraints exactly. However, these layout algorithms were
not designed to support interactive visualization. We had to extend the
algorithms to support stability of layout, user driven changes to the
LOD, and continuity.

4.1 Network Diagrams
A network diagram (V,E,C) is a drawing of a graph with nodes V , a
set of possibly directed edges E ⊆V ×V , and a set of node clusters C.
Each node v ∈ V has a rectangular bounding box with width wv and
height hv. A cluster of nodes has a boundary which is a sequence of
distinct node corners except that the first and last element is the same.
This defines a closed region called the cluster region.

A route for an edge (u,v)∈E is a sequence of line segments starting
from the centre of u, 0 or more corners of nodes around which the edge
is routed and finishing at the centre of v.

A layout for a network diagram is a triple (X ,R,B) giving a position
Xv ≡ (xv,yv) for each node v ∈V , a route Re for each edge e ∈ E, and
a boundary Bc for each cluster c ∈C.

We impose a number of automatically generated refinement con-
straints on the layout to ensure it is “tidy.” There is a non-overlap
constraint between each pair of basic graphic shapes. There is a mem-
bership constraint on each node cluster: node v is in cluster c iff v is in
the cluster region of c. The last refinement constraint is that paths, i.e.
edge routes and cluster boundaries, are not allowed to pass through
nodes. In addition the author can impose placement constraints on the
layout by using placement tools (see §4.2).

Constrained graph layout methods use a goal function to measure
the quality of a layout. We use a new goal function we call P-stress
(for path-stress). Given a layout (X ,R,B), its P-stress is

∑
i< j

wi j((di j −||Xi−X j||)+)2 + ∑
p∈P

wp((||p||−dp)+)2 (1)

where wp = 1
d2

p
, z+ is z if z ≥ 0 and 0 otherwise, and P is the set of

paths {Re|e ∈ E}∪{Bc|c ∈C} in the network.
The first component of P-stress is a modification of the stress func-

tion which penalizes nodes that are too close together. Unlike the
stress function, nodes i and j that are more than their ideal distance di j
apart are not penalized, thus eliminating long range attraction which
can cause problems in highly constrained problems (see Fig. 2). In
this regard P-stress has more in common with a Fruchterman-Reingold
force model [18] than the stress model.

The second component of P-stress tries to make the length of each
path p in the network no more than its ideal length dp. This will also
have the effect of straightening edges and making clusters more com-
pact and circular in shape, see Fig. 3. The ideal length of an edge is a
user defined parameter while the desired boundary length of cluster c
is 2

√
π ∑v∈c wvhv (i.e. proportional to the perimeter of the circle with

area equal to the combined area of the constituent nodes). The de-
velopment of the P-stress model was in part motivated by a previous
attempt at adding edge straightening forces to the stress majorization

(a) Unconstrained stress
or P-stress

(b) Constrained stress (c) Constrained P-stress

Fig. 2. When a separation constraint is added between nodes a and
b stress majorization gives undesirable attractive forces between not
immediately connected nodes (b). By contrast P-stress leads to a layout
that is less surprising (c).

method, see [10]. In practice, however, that method was not reliably
convergent and since it involved complex management of an excessive
number of dummy nodes—one for every potential bend point on an
edge—it scaled poorly.

4.2 Placement tools
The user interface provides standard placement tools on horizontal or
vertical positions of nodes: e.g. alignment and equally spaced distri-
bution, minimum distance separation constraints, an anchor tool that
allows the user to fix the current position of a selected object or set of
objects. These are similar to the constraints provided in diagramming
tools such as GLIDE [33] and Microsoft Visio. Placement constraints
are created by selecting objects and invoking a placement tool. These
constraints have a visual representation and objects can be added to
or removed from them by direct interaction. Placement constraints
are persistent, meaning that if nodes involved in a constraint leave the
primary graph, the constrained positions will be preserved (i.e. the
positions fixed) in the secondary graph, and the constraint will be re-
instated when the nodes return to the primary graph.

The visualization tool also provides two higher-level styling tools
which automatically generate placement constraints. These con-
straints behave like author specified placement constraints and so the
author is free to modify the layout by removing some or all of them.
Both tools work on a user selected sub-graph of the detailed view.

The first styling tool “orthogonalizes” the layout by adding vertical
and horizontal alignment constraints by a greedy traversal of the selec-
tion. It is worth pointing out that orthogonal layout has been shown to
improve comprehensibility of UML class diagrams [32]. An example
is shown in Fig. 4.

The second styling tool, flow, makes the selected directed edges
downward pointing with a separation constraint between the y-
positions of the ends of each edge. Cycles are handled using a heuristic
to identify an approximately maximal cycle in each strongly connected
(directed) component, and places the nodes in this cycle on the bound-
ary of a rectangle using alignment constraints. This process is repeated
until no more strongly connected components exist.6

The choice of styling tools is not exhaustive. We expect that differ-
ent applications will require different styling tools to capture particu-
lar layout conventions. However, so long as the styling tools generate
placement constraints, it is straightforward to extend our visualization
tool to support them. Using constraints to model layout style is one of
the reasons our tool is very flexible.

4.3 Topology-preserving layout
Constrained graph layout techniques have not been previously used for
interactive visualization. In such a dynamic application we need lay-
out algorithms that ensure stability of layout so that interaction does
not destroy the user’s mental model of the network. However, what is
meant by stability? As discussed in §2, in previous systems stability
has been modelled by (a) trying to keep the positions of nodes un-
changed, (b) by keeping the relative horizontal and vertical position of
nodes unchanged or (c) preserving the topology of the layout. It is sim-
ple to modify constrained graph layout to support approaches (a) and
(b). However, both of these approaches severely restrict how the layout

6This is a very different approach to the largest acyclic subgraph strategy
used to break cycles in Sugiyama methods. We prefer this approach because
it emphasises cyclic components rather than disguising them by arbitrarily re-
versing edges.

(a) Initial placement (b) After minimising P-stress

Fig. 3. Reducing P-stress by shortening edge routings improves the
layout while preserving the topology of the initial layout.

can adjust to changes such as expanding a hierarchical sub-graph. We
believe that approach (c), preserving the topology of the layout during
interaction with a weak preference that nodes do not move unneces-
sarily, is preferable. Such topology preserving layout fits well with
P-stress minimization and has a simple, readily understood physical
metaphor: The poly-line connectors and cluster boundaries act like
rubber-bands, trying to shrink in length and hence straighten. Like
physical rubber bands, the connectors and cluster boundaries are im-
pervious in that nodes and other connectors cannot pass through them.

We have developed a novel algorithm for preserving topology of
poly-line connectors during layout. Due to space limitations we give
only a very brief outline of the algorithm. Full details can be found
in [11]. Assume that our initial layout is (X ,R,B) and that we have a
new position for the nodes X ′. Assume that X and X ′ satisfy the non-
overlap and placement constraints and so does any linear interpolation
between them. Then to find new edge routing R′ and boundary routing
B′ for node placement X ′, conceptually, we move the nodes smoothly
between X and X ′, updating the routing as we go. The two changes
that can occur are: (a) two consecutive segments (v1,v2), (v2,v3) on
a route straighten and merge into a single segment when the segments
become co-linear, and (b) a segment (v1,v2) splits into two segments
(v1,v) and (v,v2) when a node corner v “runs” into the segment.

It is impossible for nodes to go through edges, and so it is impossi-
ble for edges to go through edges and so introduce crossings, and it is
also impossible for nodes or edges to go through a cluster boundary.
Thus, the new layout (X ′,R′,B′) preserves the topology of the orig-
inal layout. And, as long as the initial layout is feasible, the cluster
membership constraint and the requirement that edges do not intersect
graphic objects will remain satisfied.

Another operation we need is to repair an edge route or cluster
boundary given that the path may have become invalid because it now
passes through a graphic object or could be shortened by straightening
and merging some adjacent segments in the path. However, as much
as possible we want to preserve the current path. In the case of an
edge route we do this by finding a new route for the path and tracing
the old path, effectively threading the path through the objects to the
destination object. At all stages the connector acts like a rubber band,
fitting snugly around objects on the route. The tool uses the connector
routing library described in [39] to dynamically route from the start
object to the cursor location while preserving as much of the previous
route as possible. More exactly, the last bend in the route is removed
from the route whenever the bend angle around the node becomes 180◦
or more, and routing proceeds from the preceding bend.

4.4 Basic layout algorithm

The goal of the constrained graph layout engine is to find a layout that
minimizes P-stress and which satisfies the refinement and placement
constraints. We utilize a three stage algorithm.
(1) A position for the nodes satisfying the placement and refinement
constraints is found by projecting the current position of the nodes X0

on to the placement constraints and then using a greedy heuristic to sat-
isfy the non-overlap constraints and cluster containment constraints.
We use the approach detailed in [9].
(2) Edge routing is performed using the incremental poly-line con-
nector routing library [39] to compute poly-line routes for each edge,
which minimise edge length and amount of bend. Cluster boundaries
are obtained by using the convex hull of the objects in the cluster.
(3) The layout is optimized by iteratively improving the current layout
by using a (non-linear) gradient projection approach. This preserves
the topology of the initial layout.

Graph |V | |E| FM3 FM2 Adj. |V ′| Avg. FR
tahoe-small 36 51 0.04 0.01 20 19.1
tahoe-large 266 373 0.40 0.13 20 17.3
tahoe-large 40 16.6
biological 432 481 0.72 0.23 20 19.3
biological 40 18.4

Table 1. Timings (in seconds) for the overview and detail layout dur-
ing interaction on a 1.83 GHz MacBook Pro. FM3 is the Fast Multilevel
Multipole method used for initial overview layout, FM2 Adj. is the Fast
Multipole relayout method with fixed position constraints, and Avg. FR
is the average frames (iterations) per second during full, topology pre-
serving constraint layout of the detailed view of the primary graph with
node set V ′.

It is step (3) of the algorithm which is most novel. Its effect is illus-
trated in Fig. 3. It uses a non-linear gradient projection approach [4] to
iteratively improves the current layout (X ,B,R). It works by choosing
a descent direction d and step-size α in which to improve the current
node position. However, the new position, Xd = X +αd, for the nodes
may violate the constraints. This is corrected by projecting Xd on to
the feasible region.7

One of the keys to the efficiency of our algorithm is that place-
ment constraints are examples of so-called separation constraints in
a single dimension.8 Since these only involve variables from a single
dimension, it is correct to project on to each dimension independently.
There are a number of algorithms for projection on to separation con-
straints. We use the algorithm given in [9] which is based on an active
set method (like the related Simplex algorithm). Non-overlap con-
straints are handled by using a heuristic to generate a separation con-
straint which ensures non-overlap. This choice of separation constraint
is dynamically updated during the iterative optimization so as to allow
objects to move around each other.

As part of the projection step we update the connector routing R
and cluster boundaries B to be in accord with the projected node place-
ment Xd while preserving the original topology. Edge routing correc-
tion works as follows. Each node v is moved horizontally/vertically
from the initial feasible solution X0 for which the routing is correct,
towards Xd . The current horizontal/vertical position of v is given by
(1−α)X0

v + αXd
v where the interpolation factor α ∈ [0,1] indicates

how far along the path to their optimal solution the nodes are. Initially
α = 0. We then increase α until any further increase will cause one of
the edge routing events (split or merge) to occur. We perform the event
appropriately straightening or bending an edge or boundary segment
and update the edge events. This continues until α = 1, in which case
we have found the updated routing.

4.5 Smooth transitions
Smooth transitions as the layout is modified in response to changes
in the primary graph are essential in supporting a user’s mental map
as they navigate through the larger secondary graph. One possible
approach would be to simply wait for the algorithm to find the local
minimum and then use a simple linear interpolation from the current
node position to the new position. However, this has two limitations.
First, it means that there is no feedback until the layout engine has fin-
ished computing the new layout. While layout is reasonably fast, it still
means there is a noticeable lag during interaction. Second, Friedrich
and Eades [16] suggest that when animating changes in graph layout,
intermediate frames that satisfy accepted layout aesthetic criteria are
preferable to a simple linear interpolation of node positions. A com-
pelling example is that in some cases such linear interpolation can
momentarily collapse a diagram to a point before expanding back to
the target layout.

7The projection of a point d on to constraints S is the closest feasible point
to d. That is, the projection of d on to S is the vector y minimizing ∑

n
i=1(yi −

di)2 subject to S.
8Separation constraints have the form u + d ≤ v or u + d = v where u and

v are variables representing horizontal or vertical position of a node and d is a
constant giving the minimum separation required between u and v.

(a) Here the class FSSolidMatT is the initial focus

(b) The user changes focus to FSIsotropicMatT and zooms in to some of its
neighbours to see specific methods and attributes. Note that the topology of the
common subgraph between this and the previous neighbourhood is preserved.

(c) Here orthogonalization constraints have been added to a neighbourhood
around the class SSSolidMatT

Fig. 4. Navigating a large UML collaboration diagram, from the Tahoe
Development Server project (http://tahoe.ca.sandia.gov/) The
diagram contains 267 classes and 373 relationships between classes.

At each iteration our gradient-projection-based constraint layout
method seeks to improve the layout by moving nodes along a gra-
dient related feasible descent vector d. A useful property of layout
methods using such numerical optimisation is that they can easily be
animated by redrawing at each iteration of the layout. With careful
selection of step-size a reasonably smooth animation can be obtained
of the layout converging on a local-minimum. We choose the step
size from a second degree Taylor expansion of the P-stress function
about the current set of positions x combined with application of the
Armijo-rule[4] to guarantee monotonic decrease of P-stress. Unfor-
tunately, monotonic decrease in the cost function is not enough to
guarantee that there will be no apparent vibration of nodes as the lay-
out converges. High degree nodes can be particularly problematic in
this regard. To alleviate this problem we also apply a fourth-order
Runge-Kutta smoothing—essentially choosing each d as a weighted
average of 4 (feasible) descent vectors in a neighbourhood from the
starting x, see [36, pp. 653–658]. In practice we find that this method
leads to smooth animation without having to resort to the “fudge” fac-
tors or ad-hoc cooling schemes often applied in force-directed graph
layout. Principled techniques from numerical optimisation theory are
often eschewed in graph-layout implementations as either too costly
or complex, and there is an overhead in computing second derivative
information. However, since we are less interested in making our de-
tailed layout method scale to very large graphs, and more interested in
obtaining high quality layout and smooth animation we feel that such
techniques are well justified in this instance. Table 1 gives an indi-
cation of the frame rates and total times to convergence achieved for
various size primary graphs.

4.6 Layout modification
We now describe how the layout is modified during user interaction.
All interactions trigger the same basic events:
(a) Modify the primary graph if necessary,
(b) Find a new layout satisfying the placement and topological con-

straints that changes the topology of the current layout as little as
possible

(c) Use step (3) of the layout algorithm (§4.4) to optimize the layout
while preserving its topology.

(d) Center the detailed view on the focus node.
Steps (c) and (d) are the same for all interactions, so we concentrate
on describing steps (a) and (b).
Changing the focus of the detailed view to a new node v. Compute the
new nodes V ′, edges E ′ and clusters C′ that need to be added to the
primary graph to ensure v and the nodes it is connected to are in the
primary graph. A position X ′ for the new nodes satisfying the place-
ment and non-overlap constraints is found by projecting the current
position of the nodes in the secondary graph on to the placement con-
straints and then using a greedy heuristic to satisfy the non-overlap
and containment constraints. Edge and boundary routes are computed
for E ′ and C′ using the incremental poly-line connector routing library
if they have not been previously computed, or else if old routes exist
because the edge or cluster has previously been in the primary graph
the route is repaired.
Changing the LOD of a single node v. This means resizing the node
v. The primary graph remains unchanged. Let (X ,R,B) be the cur-
rent layout. The new layout (X ′,R′,B′) is computed as follows. A
new position X ′ satisfying the placement and separation constraints
generated from the non-overlap constraints is found by projecting the
current position X on to these constraints. Updated edge and boundary
routes R′ and B′ are computed from R and B using topology preserving
interpolation from X to X ′.
Collapse a cluster c of nodes into a single node vc. We record the
edge routing and boundary routing for c—it will be used if the cluster
is re-expanded. The primary graph is modified so as to collapse the
cluster by removing internal edges and nodes, adding the new node
vc and collapsing edges in and out of the cluster to edges to vc. The
new layout is the same as the old layout except that the internal edges,
boundary and nodes of c are no longer placed or routed, the node vc is

placed at the center of where c used to be, and each edge to vc uses a
repaired route of one of the original edges it was based on.
Expand a node vc representing a cluster c of nodes. We remove vc
and add the internal edges and nodes in c to the primary graph. A
position for the nodes satisfying the placement and non-overlap con-
straints is found by projecting the current position of the nodes on to
the placement constraints and then using a greedy heuristic to satisfy
the non-overlap constraints. The new edge and boundary routes for
the original edges and cluster boundaries are computed using topol-
ogy preserving interpolation from the old node positions to the new.
Edge routes for internal edges in c and boundary of c are computed
using the incremental poly-line connector routing library and convex
hull unless routing information has previously been recorded for them
in which case this is repaired.
Adding a placement constraint. The user can customize and improve
the layout by adding placement constraints either manually or by using
a styling tool. A new position X ′ for the nodes in the primary graph
is computed by projecting the current position of the nodes X on to
the new set of placement constraints and then using a greedy heuristic
to satisfy the non-overlap constraints. The edge and cluster routes are
repaired.
Removing a placement constraint. This simply removes the constraint.
Direct manipulation. The user can also improve the layout by reposi-
tioning a node in the detailed view using direct manipulation. The
layout engine is fast enough to provide “live” feedback. Thus the tool
is really a kind of collaborative graph-layout tool in which the user
can interact with the optimisation engine to improve the layout and es-
cape local minima by providing user hints [7]. By default topology is
preserved during direct manipulation. However, if an “alt” key is held
down during the manipulation then the user can reposition the node
anywhere they like, modifying the topology and breaking any place-
ment constraints. In this case, new routes for the edges from the node
are continuously recomputed during the manipulation and other edges
and boundaries repaired if the node involved in the direct manipulation
is placed on top of them.

5 OVERVIEW DISPLAY

There are three key requirements for our overview display, it must be:
Fast: layout for either the whole secondary graph or at least a large
enough neighbourhood to give context must be completed in only a
second or so, even for thousands of nodes;
Able to support fixed position constraints: the positions of the nodes
in the primary graph must be fixed in the positions obtained from the
detailed layout algorithm, they should influence the layout of the sec-
ondary graph but should not be changed;
Incremental: it should take as input a set of starting positions for all
nodes in the secondary graph and fixed position constraints for the
nodes in the primary graph and find a new layout satisfying the con-
straints while only moving the unconstrained nodes as little as neces-
sary to beautify the overall layout.

There are now a number of fast layout methods for large graphs
as surveyed in §2.2. Unfortunately the second and third requirements
eliminate Eigen-projection methods such as ACE [26] and the decom-
position methods such as SPF [1]. Fortunately, the above requirements
are not dissimilar from those found in N-body physics simulations for
which a whole family of methods are well known. Fast multi-pole
methods—in which long range forces are approximated for clusters
of particles allowing all repulsive forces to be computed in O(n logn)
for n particles—represent the state of the art in this regard. Hachul
and Juenger incorporated a multilevel scheme for graphs with a fast
multi-pole method in [22]. Unfortunately, it is not clear how such a
multilevel scheme (in which a recursive coarsening of the graph is ob-
tained and the layout applied to each level of granularity separately)
can be made incremental. Thus, for all but the initial layout of the
secondary graph we use a standard fast multi-pole method without the
multilevel scheme of Hachul’s so called FM3 algorithm. Fixed posi-
tion constraints are achieved by disregarding the forces on such nodes
when computing the descent vector. Timings for initial and incremen-
tal layout of large graphs using the FM3 and standard fast multi-pole

methods respectively, are given in Table 1.

6 CASE STUDIES

6.1 UML Class diagrams
UML Class diagrams can be quite large with hundreds of classes for a
mature software project. They are naturally clustered either by mod-
ule defining the classes or by aspect. The feature that differentiates
UML Class diagrams from most other diagrams is the large amount
of information that can be presented in each node. A full Class node
may contain very detailed declarations of class attributes and methods,
which may require substantial space to display. Simply displaying
each Class node at full detail means that very little of the class struc-
ture can be viewed in the detailed view, so an essential requirement
for browsing Class diagrams is the ability to semantically zoom nodes
in situ, smoothly moving from simply the name of the Class to the
full detailed definition. Because the size change can be so dramatic,
topology preservation is very useful in maintaining the mental map
of the diagram when performing semantic zooming. Orthogonaliza-
tion of selected neighbourhoods (§4.2) also provides landmarks to aid
the mental map. Fig. 4 gives an example use-case for UML diagram
exploration.

6.2 Biological pathways
Biological networks are used to represent processes in biological sys-
tems and to capture important dependencies between biological enti-
ties. Due to the steady growth of knowledge in the life sciences such
networks are increasingly large and complex with hundreds and thou-
sands of elements. They can be clustered, for example, by functional
properties (e. g. different protein classes in protein interaction net-
works), by spatial information (e. g. cellular compartments to which
parts of the network belong to), or user given hierarchies (e. g. the
classification of metabolism into groups such as energy metabolism,
amino acids synthesis and so on). The features that make biological
networks interesting are different additional information which can be
present at nodes and edges (such as structural formulas, experimental
data) and their diverse visualization requirements [2]. We demonstrate
the investigation of metabolic networks which have a complex visual
appearance and provide LOD: in each reaction metabolic network sub-
stances (nodes) are often divided into main and co-substances; and
nodes can also be clustered either by cellular compartments or by user
given hierarchies. The network in Fig. 5 shows parts of the carbo-
hydrate metabolism (glycolysis, gluconeogenesis) and several amino
acid synthesis pathways derived from the MetaCrop database [21].
Figures 5(a,b,c) show navigation around a large network with 432
nodes and 481 edges, note the ability to expand nodes and clusters
to better show detailed node graphics or hidden subgraphs. Fig. 5(c)
shows a region of the network where the user has expanded several
nodes of interest and applied a number of placement constraints. Im-
portant paths in the network such as the backbone of particular path-
ways can be aligned horizontally or vertically. Using the presented
framework users are able to smoothly investigate metabolic networks
from abstract overview diagrams (where each pathway is represented
by one node) to details of specific reactions (where many details are
shown for a few nodes) and to produce high quality, user guided layout
ready for publication.

7 DISCUSSION AND FURTHER WORK

We have presented a new model for interactive exploration of large
networks and demonstrated its use for visualization of UML class dia-
grams and biological networks. Our strategy for combining overview
and detail displays is novel as is our approach to providing stable in-
cremental layout via topology preservation. We have built a prototype
network browser that demonstrates the viability of our model. How-
ever, our experience with the prototype has revealed several limita-
tions.

The first is the handling of large clusters. Currently, information
about clusters is ignored in the overview, which shows the fully ex-
panded network laid out as an unclustered graph. Even when the user
explicitly collapses a cluster in the detailed view, the cluster remains

(a)

(b)

(c)

Fig. 5. Navigation of a metabolic pathway network with 432 nodes and
481 edges; and final precise layout with placement of a detailed sub-
graph.

expanded in the overview. We are investigating whether it would be
better for cluster LOD to remain synchronized between the two views.

The second limitation is the treatment of nodes that have been re-
moved from the primary graph because it has grown too large. Cur-
rently the position of these nodes remains fixed so as to ensure any
constraints between these nodes remain satisfied. This makes the lay-
out somewhat inflexible: it might be better to allow the nodes to move
if the layout quality degrades. We also plan to explore if it is possible
to extend the multi-pole algorithm to support penalty-based approxi-
mate satisfaction of constraints while still keeping efficiency.

The third limitation we have identified is edge routing in dense
graphs. Currently, multiple edges may be routed for part of their length
along the same path. We are exploring schemes for offsetting such
edges so that their paths are not ambiguous, but this further compli-
cates the algorithms and may increase running times.

A final potential limitation is how to choose which nodes to include
in the detailed view if the focal node has a very high degree. This
seems an inherent limitation of the focal node-based network explo-
ration model. However, it has not been an issue in our case studies.

There are also a number of other avenues for future work. As de-
scribed in our literature survey a number of different approaches to
mental-map preserving exploration of graphs now exist. A compara-
tive study of the various methods to determine the best approach for
various applications would be useful. Further work could also ex-
plore the use of different layout algorithms, particularly for the de-
tailed view. Our particular model for constraint-based layout may be
a useful way to provide interactive refinement of combinatorial tech-
niques such as Sugiyama and orthogonal layout, using these as styling
tools to generate constraints, rather than for finding absolute positions.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. Smashing peacocks further:
Drawing quasi-trees from biconnected components. Trans. on Visualiza-
tion and Computer Graphics, 12(5):13–820, 2006.

[2] C. Bachmaier, U. Brandes, and F. Schreiber. Handbook of Graph
Drawing and Visualization, chapter Biological Networks. Chapman &
Hall/CRC Press, 2008, to appear.

[3] B. B. Bederson and A. Boltman. Does animation help users build mental
maps of spatial information. In Proc. 1999 IEEE Symp. on Information
Visualization, pages 28–35, 1999.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[5] U. Brandes, V. Kääb, A. Löh, D. Wagner, and T. Willhalm. Dynamic

WWW structures in 3D. Graph Algorithms and Applications, 4(3):183–
191, 2000.

[6] S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. In-
teractiveGiotto: An algorithm for interactive orthogonal graph drawing.
In GD 1997: Revised Papers from the 5th Int. Symp. on Graph Drawing,
pages 303–308. Springer, 1998.

[7] H. A. D. do Nascimento and P. Eades. User hints for directed graph
drawing. In Revised Papers from the 9th Int. Symp. on Graph Drawing
(GD ’01), pages 205–219. Springer, 2002.

[8] T. Dwyer, Y. Koren, and K. Marriott. Drawing directed graphs using
quadratic programming. IEEE Trans. on Visualization and Computer
Graphics, 12(4):536–548, 2006.

[9] T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental pro-
cedure for separation constraint layout of graphs. IEEE Trans. on Visual-
ization and Computer Graphics, 12(5):821–828, 2006.

[10] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing into
force-directed layout. In Proc. 14th Intl. Symp. Graph Drawing (GD
’06), volume 4372 of LNCS, pages 8–19. Springer, 2007.

[11] T. Dwyer, K. Marriott, and M. Wybrow. Topology preserving con-
strained graph layout. Technical Report 227, Monash University, 2008.
http://www.csse.monash.edu.au/publications/2008/tr-2008-227-full.pdf.

[12] P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing
for web navigation. In Proc. 5th Int. Symp. on Graph Drawing (GD’97),
pages 330–335, 1997.

[13] P. Eades and M. L. Huang. Navigating clustered graphs using force-
directed methods. Graph Algorithms and Applications: Special Issue on
Selected Papers from 1998 Symp. Graph Drawing, 4(3):157–181, 2000.

[14] M. Eiglsperger, S. P. Fekete, and G. W. Klau. Orthogonal Graph Draw-
ing, pages 121–171. Springer, 2001.

[15] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An efficient im-
plementation of Sugiyama’s algorithm for layered graph drawing. In
Proc. 12th Int. Symp. on Graph Drawing (GD’04), volume 3383 of LNCS,
pages 155–166, 2004.

[16] C. Friedrich and P. Eades. Graph drawing in motion. Graph Algorithms
and Applications, 6(3):353–370, 2002.

[17] Y. Frishman and A. Tal. Online dynamic graph drawing. In
Eurographics/IEEE-VGTC Symp. on Visualization. Eurographics Asso-
ciation, 2007.

[18] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software - Practice and Experience, 21(11):1129–
1164, 1991.

[19] G. W. Furnas. Generalized fisheye views. In Proc. of CHI’86, pages
16–23. ACM Press, 1986.

[20] E. Gansner, Y. Koren, and S. North. Topological fisheye views for visu-
alizing large graphs. pages 175–182, 2004.

[21] E. Grafahrend-Belau, S. Weise, D. Koschützki, U. Scholz, B. H.
Junker, and F. Schreiber. MetaCrop—a detailed database of crop plant
metabolism. Nucleic Acids Research, 36:D954–958, 2008.

[22] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Proc. 12th Int. Symp. on Graph Drawing
(GD’04), volume 3383 of LNCS, pages 285–295. Springer, 2004.

[23] S. Hachul and M. Jünger. An experimental comparison of fast algorithms
for drawing general large graphs. In Proc. 13th Int. Symp. on Graph
Drawing (GD’05), LNCS, pages 235–250. Springer, 2005.

[24] W. He and K. Marriott. Constrained graph layout. Constraints, 3:289–
314, 1998.

[25] J. Heer and D. Boyd. Vizster: Visualizing online social networks. In IN-
FOVIS ’05: Proc. 2005 IEEE Symp. on Information Visualization, page 5.
IEEE, 2005.

[26] Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvec-
tors computation for drawing huge graphs. In INFOVIS ’02: Proc. IEEE
Symp. on Information Visualization, page 137. IEEE, 2002.

[27] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Trans. on Computer-Human In-
teraction, 1(2):126–160, 1994.

[28] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210,
1995.

[29] S. C. North and G. Woodhull. Online hierarchical graph drawing. In GD
’01: Revised Papers from the 9th Int. Symp. on Graph Drawing, pages
232–246. Springer, 2002.

[30] A. Perer and B. Shneiderman. Balancing systematic and flexible explo-
ration of social networks. Trans. on Visualization and Computer Graph-
ics, 12(5), 2006.

[31] C. Plaisant, J. Grosjean, and B. B. Bederson. Spacetree: Supporting ex-
ploration in large node link tree, design evolution and empirical evalua-
tion. In INFOVIS, pages 57–, 2002.

[32] H. Purchase, J. Allder, and D. Carrington. Graph layout aesthetics in
UML diagrams: User preferences. Journal of Graph Algorithms and
Applications, 6(3):255–279, 2002.

[33] K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proc. 10th Annual ACM Symp. on User Interface
Software and Technology, pages 97–104. ACM Press, 1997.

[34] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Hu-
man Factors in Computing Systems, CHI’92 Conference Proc.: Striking
A Balance, pages 83–91. ACM Press, 1992.

[35] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-
ing of hierarchical system structures. IEEE Trans. on Systems, Man and
Cybernetics (SMC), 11(2):109–125, 1981.

[36] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover,
3rd edition, 1985.

[37] F. van Ham and J. J. van Wijk. Interactive visualization of small world
graphs. In INFOVIS ’04: Proc. IEEE Symp. on Information Visualization,
pages 199–206. IEEE, 2004.

[38] C. Ware. Interacting with visualizations. In Information Visualization:
Perception for Design, chapter 10, pages 317–350. Elsevier, 2nd edition,
2004.

[39] M. Wybrow, K. Marriott, and P. J. Stuckey. Incremental connector rout-
ing. In Proc. 13th Int. Symp. on Graph Drawing (GD’05), volume 3843
of LNCS, pages 446–457. Springer, 2006.

