
What do Constraint Programming Users Want to See?
Exploring the role of Visualisation in Profiling of Models and Search

Sarah Goodwin, Christopher Mears, Tim Dwyer, Maria Garcia de la Banda, Guido Tack and Mark Wallace

Abstract— Constraint programming allows difficult combinatorial problems to be modelled declaratively and solved automatically.
Advances in solver technologies over recent years have allowed the successful use of constraint programming in many application
areas. However, when a particular solver’s search for a solution takes too long, the complexity of the constraint program execution
hinders the programmer’s ability to profile that search and understand how it relates to their model. Therefore, effective tools to
support such profiling and allow users of constraint programming technologies to refine their model or experiment with different
search parameters are essential. This paper details the first user-centred design process for visual profiling tools in this domain. We
report on: our insights and opportunities identified through an on-line questionnaire and a creativity workshop with domain experts
carried out to elicit requirements for analytical and visual profiling techniques; our designs and functional prototypes realising such
techniques; and case studies demonstrating how these techniques shed light on the behaviour of the solvers in practice.

Index Terms—visual analytics, user-centred design, profiling, constraint programming, tree visualisations

1 INTRODUCTION

Combinatorial problems require finding a combination of choices (a
solution) that satisfies a set of constraints and (optionally) is optimal
with respect to some objective function. This type of problem oc-
curs in all aspects of our lives. For example, a familiar case occurs
when a flight is delayed and the airline must find a new time, gate and
runway slot for that flight and new schedules for subsequent legs of
passenger journeys. An optimal solution will also minimise traveller
inconvenience and cost to the airline, thus improving the quality and
efficiency of their services.

The dream of Constraint Programming (CP) has long been to sep-
arate problem definition (modelling) from the search for its solution
(solving) in such a way that programmers only need to model diffi-
cult combinatorial problems and have clever, automatic solving sys-
tems readily available to then solve the problem unaided [14]. As a
result, solving systems (composed of a constraint solver and a search
strategy) have now reached a high degree of sophistication. But in do-
ing this, their operation has become exceedingly opaque to humans,
who often see them as ‘black-boxes’ producing unexpected or unpre-
dictable results. This is unfortunate because in practice human in-
volvement is still frequently required; for example: to choose the best
solver for the type of problem; modify the model to reduce the search
space the solver must explore; or to select the correct search strategy.

Finding the best combination of model, solver and search is there-
fore a very challenging and iterative process. This is particularly true
for real-world problems with large-scale input data. This process is
a classic instance of profiling, where the workflow typically involves
three steps that are iterated:
1. Observe the behaviour of the program;
2. Hypothesise about why certain unwanted or unsatisfactory be-

haviour occurs;
3. Modify the program to test the hypothesis (by observing a change

in behaviour).

• Sarah Goodwin and Tim Dwyer are with the Adaptive Visualisation Lab,
Monash University. E-mail: {sarah.goodwin, tim.dwyer}@monash.edu.

• Christopher Mears, Maria Garcia de la Banda, Guido Tack and Mark
Wallace are optimisation researchers with the Faculty of Information
Technology, Monash University. E-mail: {chris.mears,
mariagarciadelabanda, guido.tack, mark.wallace}@monash.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

In this paper we explore the use of visualisation for profiling to bet-
ter understand model and search performance. We focus on the needs
and priorities of users of CP technology through a user-centred vi-
sualisation design approach. We gather requirements within the CP
community through an on-line questionnaire and a full-day creativity
workshop (see Sec. 3). Our co-located team combines experts in vi-
sualisation with experts in CP (see authors). We collaborate to build
upon our recent research into search statistics and visual profiling [35].
The results of this study identify that knowledge discovery and insight
through visual analytics [20] can significantly benefit the CP commu-
nity. Our contributions include:
1. The first user-centred visualisation design project in the field;
2. Insights and opportunities identified through our requirements

gathering process, which is applicable to other domains;
3. Implementations of prototype designs based on the user require-

ments elicited;
4. Exploration of three case studies demonstrating insights, knowl-

edge discovery and improvements to the models through the use of
our prototype visual profiling techniques;

5. Informed visual design ideas and plans for development to allow
for more efficient CP profiling in the future.

2 CONTEXT AND RELATED WORK

Finding quality solutions to combinatorial problems is remarkably dif-
ficult. Modern approaches focus on developing a model that describes
the problem in terms of parameters, variables, constraints and an ob-
jective function. The parameters can later be instantiated with input
data describing a particular instance of the problem. The aim is then
to find an optimal solution for the instance, i.e. an assignment of vari-
ables to values that satisfies all constraints in the model and optimises
the objective function. To find such a solution, the programmer must
select a solver to satisfy the constraints in the model and a search strat-
egy to explore the search space. The combination of model, input data,
solver and search strategy is referred to as the constraint program.

Existing profilers (e.g. [4, 6, 7, 10, 11, 28, 32, 36]) allow program-
mers to observe the behaviour of the program execution. In general,
these profilers use standard tree-drawing techniques, which are com-
monly known by CP users. Some incorporate alternative views. For
example, CPViz [36] is an open-source generic visualisation library
aiming to enable users to better understand the search and solver pro-
cess. The visualisations are demonstrated for a number of specific
problems; however, on investigation the library of visualisations is
limited and, importantly, they do not scale to large instances.

In general, traditional tree representations are often found to be
inadequate for visualising large problem instances, which have hun-

Design Iterations

Overview (7)

Inspect Detail (5)

Compare (3)

Modify (2)

Automate (3)

Custom (2)

Chain Addition

IN
FO

RM
ED

 D
ES

IG
N

CH
O

IC
ES

FO

R
IM

PL
EM

EN
TA

TI
O

N

DO
M

AI
N

KN
O

W
LE

DG
E

AQ
UI

SI
TI

O
N

REQUIREMENTS GATHERING

Aspirations Barriers

Visualisation
Awareness +
Analogies

Storyboards

22
 T

HE
M

ES
 (g

ro
up

ed
 in

to
)

6
AN

AL
YT

IC
AL

 T
AS

KS
:

Visual
Thinking

Reflection on
Practice

Background &
Expertise Know?

See?

Do?

In the future we will ...

+ what next?

T1
-5

 A
NA

LY
SI

S
+

CO
M

M
O

N
TH

EM
ES

 Questionnaire
32 Participants

Creativity Workshop 10 Participants

What do you want to...
What stops

these aspirations

being

implemented?

EXPLORATION

T1

T2

T3 T4 T5Power Graph

Vehicle
Routing

DI
SC

O
VE

RI
ES

6 MCQ

5 MCQ
4 OQ

4 MCQ
3 OQ

Wow! It
could be

my data....

Pr
ot

ot
yp

es

Fe
ed

ba
ck

 S
es

si
on

s
6

Pa
rti

ci
pa

nt
s

Fig. 1: The requirements gathering and exploration process. Stages of the process in white. Participant activities in yellow with question types:
multiple choice (MCQ) or open-ended (OQ). Key findings in blue. Exploration case studies in purple with relevant profiling tasks T1-5 (orange).

dreds or even thousands of variables, values and constraints. The
general problem of tree visualisation has received significant atten-
tion from visualisation researchers [33], including user experiments
with tree visualisation systems [22]. Some of these alternative tree
representations—often more applicable to larger instances—have ap-
peared in the CP-related literature. For example, treemaps are men-
tioned in [36], pixel trees [5] are briefly explored in our previous
work [35], and sunbursts are explored in [29] but only for small prob-
lems. There has not been however, to the best of our knowledge, a
thorough user-centred exploration of tree or alternative visualisation
for CP.

Relevant research on analytical and visual tools for monitoring con-
straint programs includes DiSCiPl [9]. This research identified that
beside the search tree, users are also interested in the evolution of vari-
able domains, the activity of variables and constraints, and the interac-
tion between them. Following these recommendations, visualisation
research by Ghoniem et al. [15, 16] delves into the details of the dy-
namics of the solver by exploring the relations between constraints and
variables that arise through propagation (the reduction of variable do-
mains according to the constraints, see Sec. 4). Based on the generic
trace format GenTra4CP [1], the research uses adjacency matrices for
displaying variable co-activity and constraint relationships. Matrices
allow for many more variables and constraints than network diagrams
but, as with many visualisations, there are scalability issues for larger
instances. User-defined time slices allow the user to filter and navi-
gate. Whilst the research demonstrates their potential for insight into
the static and dynamic structure of propagation between variables or
constraints, these visual options are not available in current software or
known to the wider CP community. The visual representation is also
relatively unintuitive at first glance, although the use of interaction and
animation do aid comprehension.

Despite all the research in the area, there are still only limited vi-
sual resources for profiling CP models in practice. The notion of vi-
sual profiling is hindered by a small diverse user group across a wide
application area using a mixture of software, solvers and outputs. Vi-
sualisation options seem to be either so specific as to be useful only
for certain problems, or so broad as to be too simple for real-world
problems. Visual representations are also confronted with the chal-
lenge of presenting exponentially growing data, together with techni-
cal limitations relating to screen space and memory usage. The current
visual representations do not allow programmers to develop effective
hypotheses regarding the program’s search behaviour and, to the best
of our knowledge, none of the profiling methods proposed involve a
user-centred visualisation design approach.

Our research into opening the complex world of constraint pro-
gramming execution to users follows growing interest in the use of
visualisation for aiding the understanding of complex computational
algorithms and models (e.g. [27, 34]). Mühlbacher et al. [27] iden-
tify two different types of user involvement for visualising algorithms
and models - Direction of the Information or the Entity of Interest,
both are broken down into: ‘feedback’ or ‘control’ of the ‘execution’
or the ‘result’. These types of user involvement are all highlighted as

important for CP profiling during our requirements gathering process.
Sedlmair et al. [34] present an extensive literature review and frame-
work relating to the role of visualisation in parameter space analysis
for simulation modelling. Some of the analytical tasks and navigation
strategies described in the framework are relevant, in particular the
task of optimising the model parameters for the best output.

In more general programming domains, there has been significant
work on understanding how people think and communicate visually
about the complex systems that they develop and maintain [8]. This
willingness to turn to visual explanation suggests there is also room
for improvement with more visual digital tools and techniques to com-
plement the programming experience. For more efficient modelling,
it is therefore important to identify what CP users actually need, and
to explore which visualisations enable exploration of the program’s
behaviour and allow programmers to develop useful hypotheses with
which to modify their program.

3 GATHERING REQUIREMENTS

In order to gain a broad overview of the visual and non-visual methods
currently used to profile constraint programs we ran an on-line ques-
tionnaire targetting the global CP community1. We analysed the re-
sponses and followed this with a one-day workshop with selected par-
ticipants, who were challenged to think creatively about future visual
profiling opportunities. An overview of the process is shown in Fig. 1.
We summarise the findings of both the questionnaire and workshop
in this section. More context and definitions are described in Sec. 4,
prior to the description of our exploration process, prototype designs
and case study exploration in Sec. 5.

3.1 Questionnaire
The questionnaire was designed to achieve two main aims.
1. To understand the different tasks currently performed by CP pro-

grammers when trying to improve the execution of their programs,
and the associated difficulty and impact of these tasks.

2. To discover the different ways in which programmers visualise
problems internally or externally, and whether these differ depend-
ing on background and expertise.
Following internal piloting, we recruited 32 participants of the 52

invited from the CP community. The questionnaire took approxi-
mately 25 minutes to complete and consisted of three sections includ-
ing a balance of multiple-choice (MCQ) and open questions (OQ), see
Fig. 1. MCQ were chosen to provide quantitative values on exper-
tise and current practice, whilst the OQ give us greater insight into
the actual information and visual representations currently being used
and/or would like to be available. From the OQ responses we defined a
number of codes and two researchers—one from CP and another from
visualisation—coded all questionnaire responses to group quotes into
common topics.
Expertise and Knowledge of Participants Participants were chosen
by the authors as experts in the field. Nearly all participants iden-

1Affiliates of the Association of Constraint Programming www.a4cp.org

T1 (27) T2 (29) T3 (32) T4 (28) T5 (31)

U P M U P M U P M U P M U P M
0%

50%

100%

(U)sefulness most least most leastDifficulty to (P)erform
& (M)easure impact

Fig. 2: Ranking of profiling tasks T1–5 (with response numbers).

tified themselves as researchers, whether industrial or academic. In
addition, the participants identified themselves as CP teachers (14
responses), practitioners (13), solver/modelling language developers
(10), or students (5). The overall majority of participants had a back-
ground in computer science, mathematics or engineering. In terms
of self-grading expertise, nearly all participants identified themselves
as having advanced knowledge of programming and optimisation, and
advanced or expert knowledge of modelling languages and CP. Partici-
pants had novice-intermediate expertise with visualisation and design.
Reflection on Current Practice Participants were asked ‘when the
program is executing, how well do you understand what it is doing?’
20 of 32 responded well or very well. This was higher than expected.
Yet when participants were asked to identify ‘which part of the pro-
cess is particularly unclear’, responses were varied. 10 identified the
propagation and solver phase of the programming experience with one
stating “The actual workings of the global constraints (propagators)
are often a blackbox” and another commenting “There is no way (that
I know) to tap into the execution of the solver and see what’s happen-
ing.” The relationship between the constraints, the variables and the
behaviour of the search strategy were also identified as being unclear.

Prior to the questionnaire, five options were identified as common
tasks to undertake when a program is not performing satisfactorily:
T1 Use Alternative Solver
T2 Use Alternative Search Strategy
T3 Alter Model Variables/Domains/Constraints
T4 Observe/Trace the Execution
T5 Simplify the Instance
Participants were asked which tasks they use, how useful they seem,
how difficult they are to perform, and how hard it is to measure their
impact. The results are shown in Fig. 2. All tasks were used and most
were found to be useful. Most notably, T1 was the least used with 27
responses with mixed ratings on difficult to perform. T3 was used by
all and rated by the majority as very useful, and T4 was on average
rated as the most difficult to perform and to measure its impact.

Seven participants also identified other types of task, mainly related
to writing specialised code to debug the program, including recording
additional statistics, visualising the data and trying to discover areas
where a customised constraint is needed. These participants had a
higher than average response to understanding what the program was
doing when executing, and a higher than average experience of CP.
Unsurprisingly, some were solver or modelling language developers.

When asked what extra information they wish they could see during
or after the execution process, nearly all respondents suggested “more
statistics” and many stated that visualising information would be par-
ticularly useful, for instance: “[to] visualize the searching progress
will help me to understand what the solver is doing and if it is doing
what I expect it to do.”

As CP is used in many different application areas, it is unsurprising
that a high level of quotes relate to problem-specific visualisations. We
identified 31 quotes from 19 unique participants relating to inherent
representations, for example, for a routing problem being able to see
the routes change on a map as solutions are found. Other common
themes from the OQ were being able to visualise the search space,
see the interaction between the constraints and the propagation, trace
stages of execution and visualise the solutions.
Visual Thinking For the visual thinking section we divided the pro-
gramming process into four stages:

1. Formalising the Problem (e.g. representing variables, constraints
and data)

2. Choosing the Technique (e.g. type of solver and search)
3. Writing the Program
4. Post-Execution (e.g. solving, debugging or improving perfor-

mance)
When asked at what point in the process respondents think about

the problem visually, all but two chose Stage 1 (with one stating they
did not think visually at any stage). Stage 4 was the next most com-
mon with 21 of 32 participants, while only 13 and 12 chose Stage 2
and 3, respectively. These findings follow our expectations of (a) pro-
grammers often using visualisation to break down a problem (Stage 1)
visually via pen and paper or sketching on whiteboards, and of (b) vi-
sualisation often being used to present solutions or to debug/improve
program performance via statistics (Stage 4).

26 of 32 respondents said they have drawn diagrams before to better
understand or to help solve optimisation problems. We further inves-
tigated some of these visual representations (by communicating with
the respondents) and found that all these related to Stage 1 and Stage 4.
The fact that a third of participants do not think about the problem vi-
sually at the final stage of the process is interesting and indicates there
is scope for better visual aids to allow users to profile their models
visually. However, there is not necessarily a consensus regarding the
usefulness of this. One participant stated: “I value the idea of separa-
tion of model and search, so that I usually try to not monitor closely
the execution process” and another: “it might be that the specific exe-
cution of the solver is unclear but that is not a problem to me.”

We were also interested in the differences between the internal and
the external ‘mental models’ [23] built for any given problem. We
described a mental model to the participants as a small scale abstract
internal representation of a real-world phenomenon and emphasised
that mental models are different for everyone, whether novices or ex-
perts, and that models can adapt as knowledge is acquired.

Two thirds of the participants indicated they were aware of their
mental model when tackling a problem. When asked to think about
how these could be visualised using common visual representations,
matrices or tables were the most popular methods, as were node-link
diagrams / graphs, tree diagrams, Gantt charts and timelines.
Summary of Results Many responses confirm the complexity of the
profiling process and the limited number of tools available: as a partic-
ipant stated, the process “can be so complicated, the problem as well
as the solution, and to be sure that it is doing what you intend can be
a real nightmare!”

While few visualisation tools are available to users, they often
turn to visual representations for additional information. One user
states that “[for] almost every problem I have solved I produce a vi-
sual model of the constraint model”; another, “Sometimes thinking
about these aspects visually inspires me to develop a new relaxation
scheme”; and a third that “often I will ‘draw’ the constraint model,
maybe thinking of it as a machine, mechanical, or something that
you can ‘prod’ and it produces a new state”. One even had reflected
on whether visualisation actually helps or not: “I think often about
whether visualisations help me or keep me from building better mod-
els, I am not sure what the answer is.”

One participant also reflected on the pros and cons of the visual-
isation library discussed in the previous section [36]: “I really liked
the features of CPViz that would visualise the variable assignments
through search. This way I was able to check if the search strategy
did what I expected. However, it’s cumbersome to hook up to these
visualisation tools, which creates quite a barrier for using them.”

Overall there seems to be a lot of potential for improved feedback,
whether statistical or visual. Currently even “Getting a global feeling
for the process without having to study the very detailed output” is
difficult. The users are aware that their variables are related and often
ordered or multi-dimensional: “Variables are often organized in ma-
trices, I often visualize the matrices in my head”, and that there are
often patterns to be found in the search: “more detailed visualisation
of search tree, e.g. highlighting similar patterns in the search tree to
find out where the search is duplicating effort.”

Whilst responses show that participants would like improved an-
alytical and visual CP profiling, suggestions were diverse and rather
limited in their novelty. From these results it was therefore difficult to
determine an area on which to focus our attention. In order to push the
boundaries beyond the current thinking and determine the real aspira-
tions for visual profiling, we decided to follow the questionnaire with
a creativity workshop. These have been shown to be particularly ben-
eficial in provoking creative ideas and identifying new opportunities
during requirements gathering [25, 26].

3.2 Creativity Workshop

A full day workshop was designed to think about the profiling prob-
lem from a new angle. To select potential workshop candidates, we
analysed the survey responses and highlighted particularly interesting,
unusual or creative ones. Candidate participants were discussed based
on their responses and, to get a mixture of individuals, on the diver-
sity of their application area. All 10 candidates selected accepted our
call, many being particularly eager for a chance to look at the problem
from a different perspective. Due to travel costs, selection was skewed
to local or already visiting participants, though one did fly interstate
for the workshop.
Workshop Design The structure of the workshop follows one specif-
ically designed for the gathering of visualisation requirements with
experts in the use of creativity techniques (see [17]). The workshop
has been successful in eliciting requirements for visualisation from en-
ergy analysts [17] and neuroscientists [24]. The structure was slightly
amended due both to the different area of expertise and upon reflec-
tion on the previous workshops: keyword prompts were changed, the
visualisation awareness examples updated (and participants given a
prompt sheet for notations), and the storyboard activity was given ex-
tra time and made optionally individual or paired to reflect the diverse
application area. Many factors were considered to provide a creative
atmosphere [18], including: room choice, timed breaks between ex-
ercises, the engagement of all participants, group discussion, group
lunch activity and the mixture of diverging and converging activities.
Creative thinking and techniques were described, ground rules identi-
fied, laptops put away and the goal of the workshop was outlined as: To
identify data analysis and visualisation opportunities for more effec-
tive profiling techniques for (complex) constraint programs. Finally,
as way of introduction, the same what animal would you be today?
exercise [17] was used to ensure participants began to think creatively.
Aspirations and Barriers To explore aspirations for more effective
CP profiling techniques without being hindered by implementation,
technology or resources, participants were asked: Your program does
not execute as expected...: What would you like to be able to do?, What
would you like to know?, What do you wish you could see?

122 post-its (some repeated) were produced during the initial in-
dividual exercise. A further 36 were produced during part two,
where appealing aspirations were discussed by small groups and new
ideas were identified, presuming the initial aspiration had been imple-
mented. Post-its were arranged into common themes.

The barriers to implementing these aspirations were subsequently
identified in the second activity. In total, 27 barriers were identified.
Some examples are: “being focused on the problem not the visual
representation”, “conflict of interest between academia and industry”,
“complexity of data”2 as well as a diverse application area and small
user base. Specifically, a lack of purpose built visualisation tools was
highlighted and adopting general visualisation tools was seen as being
too difficult. For the latter, it was felt that the visualisations these tools
produce are inappropriate to the problem or that seemingly promising
visuals are always “a mess” for real problems.

Part two of the barrier activity involved removing the barriers [19]
and identifying what would be possible to see, know and do if the
barrier no longer existed. A further 31 post-its were produced. The
removal of the particularly relevant barrier ‘visualisation is always a
mess’ sparked participants’ interest; they realised that it was indeed

2A lack of standard outputs from solvers was identified as a key issue.

possible to interact with the search by filtering and zooming, and to
discover the impact of constraints.
Analogies and Storyboards The visualisation awareness with ana-
logical reasoning activity saw 10 diverse visualisations presented and
described by the facilitators. Having already been prepared for analog-
ical thinking with a lunchtime activity (see [17]), participants thought
of, and wrote down analogies to their own work. The Small MultiPiles
system [2] for dynamic brain network analysis was seen as applicable
to presenting variable co-activity, comparing model executions or in-
specting similar sub-trees. A visualisation of rental-bicycle flow [38]
was seen as analogous to local search activity involving a network
of constraints, brightness indicating important bottleneck areas or no-
good (see Sec. 4) activity. The Time Curves [3] technique—for vi-
sualising high-dimensional data evolving over time—was linked to
the interaction of constraint propagation, seeing how solutions change
over time, or the progress of the search. TimeNotes [37] were identi-
fied as good to show repetitions in the search over time. GapMinder
[30] prompted discussion regarding the replaying and animating of
the search process to identify and highlight key aspects of the search
and meaningful features. Finally, an application to profile energy con-
sumption by appliance—HorizonGraphs [17]—inspired discussion on
ways to interact with model parameters and constraints and see how
these changes affect the overall search.

The final activity involved participants producing storyboards to
link and loosely prioritise the ideas from the day. Coloured pens and
A3 storyboards were provided with visual stimuli all around the room
relating to the day’s activities. Everyone then presented their story
to the group prior to wrapping up the workshop. Common ideas in-
cluded: being able to interact, explore and see what happens during
the search; see a progress bar; debug easily; see the effect of con-
straints; see links between constraints and variables; identify conflict-
ing constraints; see the propagation graph; identify bottlenecks in the
search; compare alternative algorithms and models; extract meaning
from solutions; and be able to use visualisation to improve the explain
of models and how they work.
Post-Workshop Analysis Post-workshop analysis involved grouping
aspirations and ideas into topics, themes and tasks (as in [17]). 22 core
themes were identified and grouped into six common analytical tasks
(see Fig. 3). Notably, the importance of these six groups differed with
our requirements gathering methods. We compared the workshop out-
comes to the quotes from the questionnaire (OQ) (What extra informa-
tion do you wish you could see during or after the execution and how
would this help you?), recoded using these 22 Themes / 6 Groups. The
groups found as most important during the questionnaire —inspect de-
tail and overview—became less dominant during the workshop. While
these were still important in the workshop, two new topics emerged:
Automate (A16-18: i.e. automatic detection of bottlenecks, anomalies,
redundant constraints; expected errors in the model; or automated sug-
gestions for change) was identified as being desirable to improve the
profiling process, as was the ability to Modify the model parameters
through the visual profiler.

3.3 Summary and Prioritisation
The outcomes of the requirements gathering phase allowed us to gain
a thorough and broad understanding of the opportunities and consider-
ations for visual profiling. Referring back to the types of user involve-
ment for visualising algorithms and models [27], we observe that all
four types (the feedback and control of both the execution and result)
emerged during our requirements gathering phase.

The 22 themes (Fig. 3) were subsequently prioritised by the team
based on their ease of development (D)—with respect to acquiring the
data from the system as well as developing the visualisations—and
their impact value (I) to the user. We also assessed our group’s previ-
ous (P) visualisation work—collapsible trees, pixel trees, similarities
of subtrees and merging trees [35]—for how well they met these user
requirements. Through this exercise we were able to identify core pri-
orities for exploration in terms of high impact plus low–medium de-
velopment cost, as well as determine which areas have not yet been ex-
plored by our work. Whilst controlling the model parameters (A19-20)

Fig. 3: Identification codes for our 22 themes as discovered through
post-workshop analysis. Colours indicate priority by: potential
Impact, Difficulty to develop, whether covered by our Previous
work [35], and priority for current Exploration.

is a goal for our continued development, we must first extract statistics
from the solvers and explore useful and usable visual representations.
Such explorations will potentially allow us to identify search patterns
or structure that we can use for automatic detection (A16) or sugges-
tions (A18). These were therefore left for future work (blue in Fig. 3).
We particularly focus on the key requirements (bold in Fig. 3) for our
visualisation exploration phase (see Fig. 1), as described in the follow-
ing sections.

4 DETAILED CONTEXT

This section outlines the solvers and statistical information used in
Sec. 5 to explore the visual profiling of three case studies. We focus
on models defined over finite domain variables, which can only take a
finite number of values, e.g., any value in between 1 and 100, or any
value in the set {4,5,8,100}. We also focus on propagation based
solvers, which work by propagating changes in the domains of vari-
ables, i.e., by eliminating from the domains of all variables any value
now known not to be part of any solution. Finally, we focus on tree-
based search methods, which proceed by making a series of decisions.
Each decision is a constraint (often of the form x = v, where x is a
variable and v a value in its domain) that corresponds to a node in the
tree, and triggers a propagation step where all constraints affected by
the changes to variable x start propagating. The search proceeds mak-
ing decisions until either (1) all variables are assigned and the problem
is solved, or (2) the associated solver can detect a failure (at least one
variable has no values left in its domain), or else (3) a restart event has
occurred. In case (2), the search will usually backtrack to a previous
point where a different decision can be made. In case (3) the search
will start a new search tree, possibly incorporating new constraints
learnt during the previous search.

Importantly, the same problem can be solved using different con-
straint programs, i.e.: different models, solvers and search strategies.
A change in model might arise from using different types of variables
(e.g., integer, booleans, or sets), different types of constraints (e.g.,
in-built, user-defined, or global), or by adding redundant constraints
to reduce the search space by increasing propagation. Programmers
might also experiment with different solvers, such as SAT solvers (spe-
cialised on boolean variables), traditional CP solvers (e.g., Gecode3),
nogood-learning solvers (able to infer reasons or nogoods for every
failure node and use them to reduce search space), or linear integer

3http://www.gecode.org

solvers (e.g., CPLEX). Finally, programmers can experiment with dif-
ferent search strategies when selecting the particular variable and value
being used for each decision by, for example, providing an initial fixed
order for variable selection, or instructing the search to select values
in a particular order (e.g., from minimum to maximum or vice-versa).
The efficiency of the resulting program, measured in terms of how
quickly an optimal solution can be found, depends crucially on the
combination of model, solver and search strategy used.

4.1 Solvers
Our exploration has focused on the use of two open-source CP
solvers—Gecode and Chuffed4—that can be easily instrumented to
export new statistics for our analysis. Gecode is a mature traditional
propagation solver that has been in development for over ten years.
Chuffed is a newer solver that combines the strengths of CP (propaga-
tion) with those of SAT (learning). We consider Chuffed in particular,
as one of our priorities is to investigate learning behaviour (A12).

The two solvers share a set of core features, including support for
integer and boolean variables, tree-search, and the use of propaga-
tion algorithms for implementing constraints. As a learning solver,
Chuffed differs from Gecode’s traditional style of CP. In particular, it
uses a hybrid of CP and SAT technology as follows. Whenever a CP
propagation algorithm reduces the domain of a variable, it must ex-
plain the logical causes of the reduction in a way similar to that used
by SAT solvers. For example, if the fact that variable x is now less than
3 causes variable y become greater than 10, this knowledge is stored
by the solver in a clause (x < 3→ y > 10). In so doing, the reason-
ing behind the constraint propagation is made explicit and can be used
later in a way similar to that of SAT solvers: upon encountering a fail-
ure, the chains of reasoning (i.e., the clauses) that led to the failure are
examined by the solver, and a new clause (a nogood) is derived. This
nogood is added as a constraint and will not only prevent the failure
from occurring again, but can also cause further propagation during
the rest of the search. In addition, the clause analysis may allow the
solver to identify past search decisions that are not involved in the fail-
ure and can, therefore, be safely backtracked over. In other words, they
allow the solver to identify the latest decision (parent tree node) which,
if changed, might lead to a solution. Thus, this search-tree node can
be used as the backtracking point from which to continue the search
exploration. Without conflict analysis, all past search decisions might
have caused the failure and, thus, need to be explored. This is the case
for traditional CP solvers.

While learning solvers have exhibited dramatically better perfor-
mance than CP solvers for certain problems (e.g., see results of the
MiniZinc Challenge5), there are also cases where the opposite holds.
Unfortunately, learning solvers are even more complex than traditional
CP solvers and, as a result, they are not well understood in practice.
Thus, it is not yet clear to the research community under what circum-
stances learning may be better, or even how to identify when or why
a learning solver is performing poorly. Our exploration aims to find
visual ways to shed light on this (A12).

4.2 Statistics
We use the search tree as a primary object of examination. It describes
how the solver traverses the problem’s search space (A3) by adding
search decisions (e.g., constraints of the form x = v) and later back-
tracking over these decisions to try others. If displayed appropriately,
it can be used as a record of the program’s behaviour (see Sec. 5).

Our system [35] records simple aggregate statistics of the search
tree, such as the number of each type of node (e.g., failure, branch, so-
lution) and the time taken to complete the search. These are useful as a
statistical overview of the execution (A6). The system also records de-
tailed information about every node in the tree (relates to A8), includ-
ing: the search decision that led to it; its depth; the size and depth of
its descendant subtree; the type of node; information about the learnt
nogoods (A12); and the timestamp (A10).

4https://github.com/geoffchu/chuffed
5http://www.minizinc.org/challenge.html

http://www.gecode.org
https://github.com/geoffchu/chuffed
http://www.minizinc.org/challenge.html

Fig. 4: Alternative tree representations. Colours relate to variables
searched on (Case Study 2: Medium Instance), legend shown in Fig. 5.

Fig. 5: Distinguishing variables by colour. The number of times vari-
ables are searched on is shown in brackets. Arrays of variables are
presented as matrices and the colour used to represent the number.
Maximum is scaled to the local variable group in this example.

We distinguish a node’s depth—the length of the path from the node
to the root of the tree—from its decision level. Certain search decisions
are not truly decisions but are in fact forced consequences of a previous
failure. A node’s decision level is the number of true decisions made
from the root to that node, and is equal to its depth minus the number
of nodes whose “search decision” was actually a forced consequence.

For Chuffed, we also record details of every nogood learnt: its
length; the variables appearing in it; the number of decisions it al-
lows the search to backtrack over; and the failure nodes for which the
nogood helps detect a failure.

5 CASE STUDIES

With a CP programmer we explore three case studies, using the statis-
tics gathered from running the two solvers (as described in Sec. 4) and
follow the 3 step iterative profiling process: observe [OBS], hypoth-
esise [HYP] and modify [MOD] (see Sec. 1). For each case study,
we provide an overview of the problem, the model, the reason for the
investigation, our observations, hypotheses, visual insights, design it-
erations and outline any improvements made to the model.

As a starting point, we considered alternative tree representations,
including radial trees, icicle plots and sunburst diagrams as shown in
Fig. 4 and supplementary material. Depictions of search trees are fa-
miliar to the CP community and often used to see and comprehend the
solver’s exploration of the search space (A3). Unlike the traditional
tree representation, icicle plots and sunbursts are space filling, which
allows for additional information, such as details of the search me-
chanics (A8), to be presented. For example, we can use their space to
encode the variable searched on at that node (see Fig. 4).

For the prototype, all colour schemes are sourced from Color-
Brewer6. In the case studies, all variables defined in the model are
allocated a colour from the quantitative Pastel1 scheme to make them
distinguishable but not overpowering. If the variable is in an array, a

6http://colorbrewer2.org

single colour is given to the group of variables, as shown in Fig. 5.
Each array is allocated a separate representation where the variables
of the array are presented as a line of squares (1D array) or a matrix
of squares (2D array). Higher-dimension arrays were not investigated
for the prototype. The colour (sequential Oranges) of each variable
square represents a statistic about the variable, such as the number
of times it is searched on. The maximum across all matrices is ei-
ther scaled to present the maximum of all variables, which allows for
global comparison, or scaled to be relative to the variable group al-
lowing for greater comparison within individual variable groups (as
some groups are searched on far more than others), as shown in Fig. 5.
White squares indicate variables that are forced not to be searched on,
as defined by the model. Grey squares show variables that have not
been searched on (i.e. count = 0), but could have been.

All of the visuals created for this exploration were implemented
with the D3 visualisation library7, and they can be toggled for each
investigation. All of the views are connected through highlighting and
selecting visual elements, with data values shown at mouse-hover, and
additional information displayed at the top of the screen.

5.1 Case Study 1: Addition Chain

A minimal addition chain for integer N is the shortest possible se-
quence of integers, starting with 1 and ending with N, such that each
integer in the sequence is the sum of two integers occurring previously
in the sequence. For example, for N = 53, a possible optimal solution
is 1, 2, 4, 8, 16, 32, 48, 52, 53, which has length 9. Note that the
shortest chain is known to be not greater than M = d2log2 Ne [31].
Thus, M is an upper bound on the length of the shortest chain for a
given N. Finding minimal chains is a classical problem in computer
science known to be NP-complete with potentially significant applica-
tions (e.g. in cryptography [21, pp. 444–446]).

We model the problem using an array x of integer variables repre-
senting the sequence, with x1 = N, xM = 1, and an objective function
to minimise the position i of the first “2” in the array (so that all vari-
ables x j for j between i and M−1 will be set to 2 in the solution, and
i+ 1 will be the length of the chain). In addition, the model has two
variable arrays, a and b, where ai and bi are the indices in x of the
values whose sum is xi; that is, there is a constraint xi = xai + xbi .

The motivation for exploring this problem and model is that while
the problem seems well suited to CP, the model performed much worse
than a purpose-written logic program. The aim was then to determine
why this was the case and improve the performance.
Visual Profiling [OBS] Initial visualisation with a traditional tree, us-
ing Chuffed as the solver, reveals a pattern we call a “weeping tree”
(see Fig. 6). This weeping effect reveals deep lopsided subtrees where
the search tries the possible values of a variable in turn, failing imme-
diately after assigning each value. Simply visualising the tree with the
colour-encoded icicle plot (x , a , b and solver- introduced variables)
in combination with brushing shows that the same variable is being
searched on repeatedly (see Fig. 6). The alternative trees can be aug-
mented with another view that shows the nodes in a horizontal line,
ordered by time (see top of Fig. 6). The multiple views allow us to see
where this pattern occurs in time, and spatially in the search tree hier-
archy. The interaction and linked views help us quickly identify that
the model wastes time trying values one-by-one for each x variable.
This behaviour accords with the search strategy in the model, which
dictates that the variables in x should be searched in order, trying each
value starting from the smallest. [HYP] Thus, from these clues we hy-
pothesise that this search strategy is inefficient. We explore different
search strategies (T2) and instances (T5), for growing values of N (see
supplementary material).

[MOD] First, we alter the search strategy to split the domains of
the x variables rather than assigning each value one-by-one, in the
hope that a single failure may be able to eliminate several values at
once. [OBS] We observe that this improves the search and continue
to try other strategies. [MOD] In particular, we try to search on a
and b together instead of x; that is, rather than deciding a value for

7http://d3js.org

http://colorbrewer2.org
http://d3js.org

b xhighlighted

Fig. 6: Highlighting shows one variable from the x array repeatedly
searched on, across all views—timeline, tree, coloured icicle plot. The
tree shows the “weeping willow” effect.

Fig. 7: Subset icicle plots for the first 50 nodes of each restart of the
execution in Fig. 4.

a variable in x, instead decide which previous values are its addends.
[MOD] We try value-selection orders of minimum-domain-value and
domain-splitting. In this case we also test maximum value, since this
should lead the search towards shorter sequences (better solutions) ear-
lier. [OBS] We see clear differences in the search pattern and observe
that searching on a and b, using the maximum value first, is the best-
performing strategy:

[MOD] We then increase N to 3979 to see if the patterns remain.
[OBS] However, the search appears very different from that of the
smaller instances, with extremely deep and narrow subtrees whose fre-
quent repetition indicates poor propagation:

Upon investigation, we found that as the variable domains in the
problem become larger, Chuffed switches its representation of the vari-
ables from using eager literals, where all the literals of the variables are
created at the beginning, to lazy literals, where the literals are instead
created on-demand. This change has an effect on constraint propaga-
tion, as the lazy-literal variables cannot be propagated as strongly in
Chuffed. [MOD,OBS] By forcing the solver to always use eager liter-
als we see that the search pattern of the earlier instances is preserved:

Design Iterations During our profiling, we found it necessary to high-
light a node and show the path of decisions made to reach it (A8). We
therefore added highlighting and selection to show this path together
with textual information of relevant search decisions. While observing
the hypothesis generating process, it became apparent that the first few
nodes of the search, and subsequent restarts, were useful for hypothe-
sis building, as these can help to indicate what the search does first and
whether it is learning well (A8). Therefore, we added small multiple
icicle plots (e.g., see Fig. 7) showing the first N nodes in each restart.

During the exploration we observed interesting tree structures. The
clear weeping tree shown in Fig. 6 corresponds to a very spiky icicle
plot or sunburst diagram. As we improved the efficiency of the model,
the depth of the tree reduced and we saw far fewer spikes on the tree.

These findings are potentially useful for our continued investigation of
detecting search patterns and automating user feedback (A16-18).

5.2 Case Study 2: Power Graph Decomposition
A power graph decomposition is a type of graph compression shown to
be useful for reducing clutter when visualising dense graphs, making
them much more readable for certain types of path-following analysis
tasks [12]. The decomposition aims to reduce the number of edges in a
graph by grouping the vertices hierarchically, and introducing “power
edges”, each compressing as many edges in the original graph as pos-
sible. Specifically, a module is a set of vertices, a power edge is an
edge where one or both endpoints is a module, a power edge from
module M to module N represents the edges {(u,v) | u ∈ M,v ∈ N},
and a vertex endpoint is treated as a singleton module. The goal is to
minimise a weighted combination of the number of edges, the num-
ber of modules, and the number of times an edge crosses a module
boundary. This turns out to be a difficult optimisation problem [13].

A CP model for this problem was previously presented at IEEE
VIS [12] and used to create optimal decompositions for graph visu-
alisations used in a readability study. This model produces optimal
solutions for small instances, yet its execution time grows rapidly as
the instance size increases and is too slow to solve large instances.
The complexity of the model makes it difficult to understand the be-
haviour of the solver, and previous experimentation with the model us-
ing standard profiling techniques—including simple changes that were
expected to improve performance—did not yield improvements [13].
Visual Profiling We initially explore three data input instances (T5):
easy (7 nodes), medium (10 nodes) and difficult (15 nodes). [OBS]
The prototype designs, particularly the coloured icicle plots and vari-
able counts, reveal that many introduced variables (by the solver, not
originally in the model) are being searched on in all three instances.
[HYP] We expect that restricting the search to branch only on non-
introduced variables will offer easier comprehension of the search.
[MOD] We alter the search strategy to do this (illustrated in Fig. 4, 5
and 7). [OBS] Relating our plots to the model is easier; however, re-
stricting the search in this way makes the execution time longer, and
gives us no further insight into why the model is performing badly.

[OBS] Since we can see in the visualisations and the execution
time that searching on introduced variables is useful, we question what
these introduced variables represent. [MOD] We alter the model (T3)
to explicitly name these variables, promoting them from introduced
to non-introduced, so that we can visualise where the solver is fo-
cusing the search. [HYP] We expected the change to be essentially
cosmetic, and not affect the behaviour of the solver. [OBS] However,
we observe that the solving time for the modified model is reduced
dramatically; e.g., on the medium instance, the search time reduces
from ∼ 350 seconds to ∼ 50 seconds, and with the further addition of
symmetry breaking constraints—which previously had been thought
ineffective—reduces to ∼ 7 seconds.

By inspecting the early stages of the search—using the small mul-
tiple plots—we see that the slight changes to the model have caused
the search to make different decisions even at the very beginning. As
they affect the clauses that are learnt (A8,A12), and which variables
are chosen later in the search, these small differences “snowball” such
that the search becomes completely different. [HYP] This case ex-
poses the fragility of automatic search, and also suggests that simple
changes, such as reordering the variables or constraints in the model,
might be a useful approach to improve performance.
Design Iterations In all of the instances—and in particular in the dif-
ficult instance—we see that the solver is able to learn “facts”, i.e., no-
goods with a single element like x ≤ 3. These represent reductions in
the domain of a variable which are globally true and, thus, are power-
ful inferences about the problem. We identified this pattern by seeing
that the goal variable (the objective) gradually descends in the icicle
tree, beginning as the first variable then stepping down whenever a
new fact is learnt (see Fig. 8a). This observation identified a prob-
lem with search trees presented in this way. The learnt fact is not a
search decision and therefore the tree actually looks deeper than it is.
We explored altering the representation to draw the alternative trees

(a) Green bands show “stepping” behaviour.

(b) Nodes with same decision level presented as siblings.

Fig. 8: Extract of the power graph decomposition difficult instance.

by decision level rather than depth—that is, to present nodes with the
same decision level as siblings, by making their parent node the near-
est node on the path to the root with a different decision level. The
result offers a more faithful tree representation (see Fig. 8b) where the
stair-stepping pattern is removed. This view is more representative of
the problem, but did not lead to further insights.

As encountered in the previous case study, larger search trees are
hard to navigate. In this case study we required an overview of the full
execution, which the small multiple subsets do not provide. We cre-
ated a simple overview of the search statistics over time (see Fig. 9A)
(A6). The search nodes are aggregated into blocks representing a fixed
percentage of all the search nodes, and drawn as a sequence of rect-
angles. These are shaded using the sequential Greys scheme. Since in
the prototype each row represents a different statistic, the colour scale
is local to each row.

To give an overview of the progress of the objective during the
search (A5,A14), we coloured the timeline (shown in Fig. 6) to show
how the domain of the objective variable changes over time (see
Fig. 9B2). We use the sequential Reds scheme, where the darker the
colour, the larger the value. While this helps see the effect of propa-
gation on the bounds of the objective throughout the search, for very
large searches such detail at the node level is difficult to present and an
aggregation of the nodes might be more applicable. For example, we
show each restart as a block of nodes in the timeline, coloured by the
value of the best solution found previously (see Fig. 9B1). The final
rectangle, coloured cream, shows how much of the search was devoted
to prove that the last solution is optimal.

5.3 Case Study 3: Vehicle Routing

Vehicle routing problems aim to find an optimal set of routes for a fleet
of vehicles, so that they visit particular client locations. Optimality
might be defined, for example, as the shortest total distance travelled
by the fleet. Many variations to this family of problems exist, such as
using time-windows to restrict when locations may be visited, adding
capacities to vehicles and distinguishing between classes of vehicles or
locations. Our model is for an industrial application, with capacities
on vehicles and multiple visits to each location over several days.

In this case study, we explore the task of altering the solver (T1).
The model performs much better using Gecode than with Chuffed, but
it is not clear what causes the difference. [HYP] One hypothesis is that
the nogoods learnt by Chuffed are simply not useful, and the effort
spent computing them is wasteful. To visually explore the learning
behaviour (A12), we use the information provided by the learnt clauses
to relate future and past nodes. When a failed node is activated, we can

identify the past clauses used to infer the failure and where the current
nogood is used in the future (through highlighting). We also list the
most important clauses for quick reference.
Visual Profiling [OBS] For this problem, the search trees for the two
solvers are visually similar. Both exhibit a “full search tree” pattern,
wherein all possibilities in a subtree seem to be explored. [OBS] By
examining the most active nogoods (those used more often in detecting
failure), and highlighting the nodes where nogoods become active, we
can see that most nogoods are not useful. That is, most clauses are
not used again later in the search and they do not cause the search to
backjump significantly.

[HYP] We hypothesise that this pattern is indicative of poor learn-
ing. We compared this problem with the open stacks problem [39],
where learning solvers are known to perform well. [OBS] One clear
difference is that the number of backjumped nodes—those which
are not explored because conflict analysis has proved them to be
irrelevant—is much higher in the open stacks search (approximately
1.3% of all nodes) than in the vehicle routing search (0.2%). This raw
number alone does not necessarily correspond to the amount of search
saved, but it prompts us to look at the backjump distance, which is a re-
lated measure. [HYP] If learning is performing well, we expect to see
the search depth jumping back high in the tree throughout the search’s
lifetime. With this in mind, we iterated the design of the timeline plot
to colour the nodes by backjump distance, using lighter shading for
longer jumps. [OBS] Now we see a stark difference:

the vehicle routing plot (top) has almost no long backjumps, while
the open stacks tree (bottom) shows longer backjumps consistently
throughout the search. These are comparable with their equivalent
tree representations.

Our exploration does not explain why the nogoods in the vehicle
routing problem are ineffective. [HYP] The likely explanation is that
the solver is learning the “wrong” explanations for failure: the solver
is limited to learning about what is explicitly expressed in the model
and cannot make higher leaps of reasoning. For example, the model
has a variable to represent the successor of each location – the loca-
tion that is visited immediately afterwards – but there is no explicit
representation of the fact that, say, location A is visited at some point
(but not necessarily immediately) before location B. It is possible that
changing the fundamental nature of the model, or the learning process
of the solver, would allow more useful nogoods to be learnt, but this is
beyond the scope of this study.

Whilst we did not improve the model, we did discover properties
of the learning behaviour (A12). The visualisations enabled us to bet-
ter understand the effect of nogoods, which may enable the automatic
detection of poor learning behaviour during the search (A16).

5.4 Design Recommendations and Participant Feedback
We conducted feedback sessions with 6 participants involved in the
workshop. In the session we explained the findings from the require-
ments gathering phase and our prioritisation process. Via annotated
videos, we gave a brief explanation of how to interpret the visualisa-
tions and presented Case Studies 1 and 2 (see supplementary material).
Participants were asked to reflect on their current profiling experience,
the themes identified in the workshop, the case studies and the visu-
alisations themselves. The sessions were individual and face-to-face
(2 were conducted virtually due to distance) because the participants
work in diverse application areas, have different expertise and each
have their own workflows. In this section, we reflect on participant
feedback and our experience gained while collaborating on the visual
profiling tasks.

We discovered that the icicle plot is relatively easy to comprehend
in the context of the search, as the length of each bar represents the
length of time when that node is active in the search. This allows for
more emphasis on, and easier interaction with, the decisions of the
search that are higher in the tree. Icicle plots present the notions of
tree depth (height) and search pattern (shape) similarly to the tradi-
tional tree, which should make them easily comprehended by the CP

Fig. 9: A. Search statistics aggregated for every 1% of search nodes – 1) number of solutions, 2) % of search nodes that are left branches, 3) %
failed nodes, 4) frequency of reuse of learnt clauses, 5) median learnt clause length, 6) mean backjump distance, 7) median tree depth. B. 1)
restarts and 2) all nodes – shaded to indicate objective (if applicable to the model) function reduction; the darker the shade, the larger the value.

community. This was confirmed by our feedback sessions. All par-
ticipants liked the icicle plots and thought they were easy to learn and
very intuitive. Structure and patterns in the search were easily identi-
fiable, particularly due to the colour encoding. Their downside is that,
like traditional trees, they need a lot of space.

Sunburst plots and radial plots offer a more compact overview.
However, these representations make comparison of different regions
of the plot more difficult as the crucial notions of execution time and
search depth are distorted. We found the icicle plot to be the most
useful of the alternative tree representations we examined (see Fig. 4).
We rarely used the traditional tree in our exploration because the ici-
cle plot superseded it, but on occasions we referred to the sunbursts
for a quick overview of search shape. Some participants really liked
the sunburst diagrams, others noted that they had to refer back to the
traditional tree for context, as this was the most well known for them.

A negative aspect of icicle plots is that as the search becomes larger,
the deepest nodes become impossible to see and interact with. We alle-
viate this drawback to a degree by using small multiple subsets. These
allow detail to be investigated at the cost of removing the overview.
They were useful for us to understand the early search decisions but
are confusing in the current prototype because, despite the coordinated
views, it is difficult to see the relative size of each subset in compar-
ison to the full tree. This will need improvement in future iterations.
The small multiples did inspire one participant to think of these as a
useful way to display clusters of similar subtree structure within large
trees to the user, similar to the Small MultiPiles system [2] shown in
the workshop. Alternative options for inspecting the detail within the
tree include allowing the user to zoom into the detail or inspect detail
through the use of a fish-eye lens.

All participants liked the ability to interact with the variables and
variable arrays and see where and how often each variable is searched
on (A8). This was seen as “really interesting” and a “very useful”
feature that is not possible with current profiling tools. The combi-
nation of timeline and search tree was useful as it offers both spatial
and temporal perspectives. The coordination of these views through
interaction was crucial for understanding their relationship. The time-
line view also enabled various properties to be shown, including objec-
tive function reduction (A5,A14), backjump distance and the locations
where learnt clauses were used (A12).

The aggregations (Fig. 9A) were useful as a quick overview (A6) for
large searches, but the current subdivision of the nodes does not reflect
the structure of the search tree and thus was sometimes frustrating or
misleading. A more sophisticated subdivision may make this view
more useful in future. Unlike these aggregations, all the alternative
tree visualisations have an issue with scalability. In our exploration
we occasionally used filtering to reduce the size and better see the
search decisions. Nonetheless, we were able to study larger searches
than in related work (e.g. [29, 36]), partially due to improvements in
technologies and visualisation libraries. One possibility for addressing
scalability and maintaining the overview of the full search space (A3)
is to provide a skeleton of the search tree shape without drawing all
the nodes.

When asked how the case studies differ from their current model
profiling workflow, participants replied “very different”, “much more
detail” and “more informative”, adding that the visual profiling case
studies were “really interesting”. One participant stated that “the tool
allows for a better understanding of the interaction between the prob-

lem and algorithm.” Another realised that visualising the search in
this way reveals a new perspective, remarking: “It is not just a search
strategy; it is a different shape. You can’t see this in the statistics.”

6 CONCLUSIONS AND FUTURE WORK

This study has highlighted the need for improved visualisation tools
to aid the complex CP profiling process. The user-centred method has
identified many opportunities where visualisation can have a positive
impact. The prototype solutions that combine alternative views, in-
teractions and navigation, show that visualisation can aid in ways that
other forms of analysis cannot.

Our extensive requirements gathering process was invaluable for
understanding existing profiling practice, and discovering users’ aspi-
rations. This gave us motivation and a focus for the initial prototype
designs. Our user-centred design process (Fig. 1) is applicable to the
wider VAST community as it can be adopted for other domains. In-
deed, as discussed in Sec. 3, this is the third domain for which this
creativity workshop structure has been used to successfully inform vi-
sualisation design.

The questionnaire helped us understand when users mostly use vi-
sual thinking: for formalising the problem; representing the solutions;
and, occasionally, for debugging and improving the model. It seems
many CP users do think visually about their problems and are aware
of their mental model, which is promising for the adoption of future
visual profiling tools. Whilst a few participants were unsure about
the value of visual profiling of solvers to their modelling practices
(Sec. 3.1), we are encouraged by our final feedback sessions, which
provoked very enthusiastic responses (Sec. 5.4).

Both the workshop participants and the authors envisage that em-
bedding visualisation in CP practice can not only aid users, but also
improve the explanation of solutions and models to others, even those
outside the domain. This could lead to CP becoming more accessible
and therefore widely used, as the frustrations of the current profiling
process are reduced.

The positive outcomes of our process have encouraged us to in-
crease our prototype visualisation library, where we continue to test
alternative visuals with case studies and users. Such visualisations
will include linking the constraint activity into the visualisations
(e.g. [15]). We will continue to investigate the themes that emerged
from the workshop; for instance, the ability to control/modify the
model through the visual interface (A19-A20) and automated sugges-
tions (A18) or detection of anomalies (A16). Through the exploration
of the three case studies we identified a number of useful insights, in-
cluding good and poor learning characteristics and visual patterns of
search structure. This will aid our continued work and may lead to
incorporating automatic detection or the ability to educate users on
search structure characteristics. The process will conclude with im-
proved visual profiling implemented into CP software [35] and tested
within the wider community.

ACKNOWLEDGMENTS

This research was sponsored by the Australian Research Council grant
DP140100058. We thank Maxim Shishmarev for his profiling soft-
ware architecture, the questionnaire and workshop participants, Bart
Demoen for models of the addition chain problem, as well as Sara
Jones, Ethan Kerzner, Jason Dykes, Miriah Meyer and Graham Dove
for their reflection and feedback on the workshop structure.

REFERENCES

[1] OADymPPaC: Tools for dynamic analysis and debugging of constraint
programs. http://contraintes.inria.fr/OADymPPaC,
2001-2004.

[2] B. Bach, N. Henry Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small MultiPiles: Piling time to explore temporal patterns
in dynamic networks. Computer Graphics Forum, 34(3):31–40, 2015.

[3] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Drag-
icevic. Time curves: Folding time to visualize patterns of temporal evolu-
tion in data. IEEE Transactions on Visualization and Computer Graphics,
22(1):559–568, Jan 2016.

[4] A. Bauer, V. Botea, M. Brown, M. Gray, D. Harabor, and J. Slaney.
An integrated modelling, debugging, and visualisation environment for
G12. In D. Cohen, editor, Principles and Practice of Constraint Program-
ming – CP 2010: 16th International Conference, CP 2010, St. Andrews,
Scotland, September 6-10, 2010. Proceedings, pages 522–536. Springer
Berlin Heidelberg, 2010.

[5] M. Burch, M. Raschke, and D. Weiskopf. Indented pixel tree plots. In
G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammoud,
M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao, and L. Avila,
editors, Advances in Visual Computing, number 6453 in Lecture Notes in
Computer Science, pages 338–349. Springer Berlin Heidelberg, 2010.

[6] M. Carro and M. Hermenegildo. Tools for constraint visualisation: The
VIFID/TRIFID tool. In Deransart et al. [9], pages 253–272.

[7] M. Carro and M. Hermenegildo. Tools for search-tree visualisation: The
APT tool. In P. Deransart, M. V. Hermenegildo, and J. Małuszyński, edi-
tors, Analysis and Visualization Tools for Constraint Programming, num-
ber 1870 in Lecture Notes in Computer Science, pages 237–252. Springer
Berlin Heidelberg, 2000.

[8] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s go to the white-
board: How and why software developers use drawings. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
‘07, pages 557–566, New York, NY, USA, 2007. ACM.

[9] P. Deransart, M. V. Hermenegildo, and J. Maluszynski, editors. Analysis
and Visualization Tools for Constraint Programming, Constrain Debug-
ging (DiSCiPl Project), London, UK, 2000. Springer-Verlag.

[10] M. Dincbas, P. V. Hentenryck, H. Simonis, A. Aggoun, and A. Herold.
The chip system: Constraint handling in prolog. In Proceedings of the
9th International Conference on Automated Deduction, pages 774–775,
London, UK, 1988. Springer-Verlag.

[11] G. Dooms, P. Van Hentenryck, and L. Michel. Model-driven visualiza-
tions of constraint-based local search. In CP 2007, volume 4741 of LNCS,
pages 271–285. Springer, 2007.

[12] T. Dwyer, N. Henry Riche, K. Marriott, and C. Mears. Edge compression
techniques for visualization of dense directed graphs. Visualization and
Computer Graphics, IEEE Transactions on, 19(12):2596–2605, 2013.

[13] T. Dwyer, C. Mears, K. Morgan, T. Niven, K. Marriott, and M. Wallace.
Improved optimal and approximate power graph compression for clearer
visualisation of dense graphs. In 2014 IEEE Pacific Visualization Sympo-
sium (PacificVis), pages 105–112. IEEE, 2014.

[14] E. C. Freuder. In pursuit of the holy grail. Constraints, 2(1):57–61, Apr.
1997.

[15] M. Ghoniem, H. Cambazard, J.-D. Fekete, and N. Jussien. Peeking in
solver strategies using explanations visualization of dynamic graphs for
constraint programming. In Proceedings of the 2005 ACM Symposium on
Software Visualization, SoftVis ‘05, pages 27–36. ACM, 2005.

[16] M. Ghoniem, N. Jussien, and J.-D. Fekete. Visexp: visualizing constraint
solver dynamics using explanations. In FLAIRS‘04: 17th intl Florida
Artificial Intelligence Research Society conf. AAAI press, 2004.

[17] S. Goodwin, J. Dykes, S. Jones, I. Dillingham, G. Dove, A. Duffy,
A. Kachkaev, A. Slingsby, and J. Wood. Creative user-centered visu-
alization design for energy analysts and modelers. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2516–2525, 2013.

[18] S. G. Isaksen, K. J. Lauer, and G. Ekvall. Situational outlook question-
naire: A measure of the climate for creativity and change. Psychological
Reports, 85(2):665–674, 1999.

[19] S. Jones, P. Lynch, N. Maiden, and S. Lindstaedt. Use and influence of
creative ideas and requirements for a work-integrated learning system. In
16th IEEE International Conference on Reqirements Engineering, pages
289 – 294, Sep 2008.

[20] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges
in visual data analysis. In Tenth International Conference on Information

Visualization, 2006. IV 2006, pages 9–16, Jul 2006.
[21] D. Knuth. The Art of Computer Programming: Volume 2 - Seminumerical

Algorithms. Addison-Wesley, 1981.
[22] A. Kobsa. User experiments with tree visualization systems. In IEEE

Symposium on Information Visualization, 2004. Infovis, pages 9–16,
2004.

[23] L. Lambert and D. Walker. Learning and leading theory: A century in
the making. In L. Lambert, D. Walker, D. Zimmerman, M. Gardner, and
P. Slack, editors, The constructivist leader, pages 1–27, New York: USA,
1995. Teachers College Press.

[24] J. S. Lauritzen, C. Sigulinsky, J. R. Anderson, M. Kalloniatis, N. Nelson,
D. P. Emrich, C. Rapp, N. McCarthy, E. Kerzner, M. Meyer, B. Jones,
and R. E. Marc. The Rod-Cone Crossover Connectome of Mammalian
Bipolar Cells. Journal of Comparative Neurology (Under Review), 2016.

[25] N. Maiden, A. Gizikis, and S. Robertson. Provoking creativity: Imagine
what your requirements could be like. IEEE Software, 21(5):68–75, 2004.

[26] N. Maiden, C. Ncube, and S. Robertson. Can requirements be creative?
experiences with an enhanced air space management system. In 29th
IEEE International Conference on ICSE, pages 632–641, 2007.

[27] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Open-
ing the black box: Strategies for increased user involvement in existing
algorithm implementations. IEEE transactions on visualization and com-
puter graphics, 20(12):1643–1652, 2014.

[28] M. Paltrinieri. A visual constraint-programming environment. In U. Mon-
tanari and F. Rossi, editors, Principles and Practice of Constraint Pro-
gramming CP ‘95, number 976 in Lecture Notes in Computer Science,
pages 499–514. Springer Berlin Heidelberg, Sep 1995.

[29] P. Pu and D. Lalanne. Interactive problem solving via algorithm visual-
ization. In IEEE Symposium on Information Visualization, InfoVis, pages
145–153, 2000.

[30] H. Rosling. Hans Rosling’s 200 countries, 200 years, 4 minutes - the joy
of stats, 2010. [Accessed on: 2016-03-30].

[31] A. Schönhage. A lower bound on the length of addition chains. Theoret-
ical Computer Science, 1:1–12, 1975.

[32] C. Schulte. Oz explorer: A visual constraint programming tool. In
H. Kuchen and S. D. Swierstra, editors, Programming Languages: Im-
plementations, Logics, and Programs, number 1140 in Lecture Notes in
Computer Science, pages 477–478. Springer Berlin Heidelberg, 1996.

[33] H. J. Schulz. Treevis.net: A tree visualization reference. IEEE Computer
Graphics and Applications, 31(6):11–15, Nov 2011.

[34] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. Visual
parameter space analysis: A conceptual framework. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2161–2170, Dec. 2014.

[35] M. Shishmarev, C. Mears, G. Tack, and M. Garcia de la Banda. Visual
search tree profiling. Constraints, 21(1):77–94, Aug 2015.

[36] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carls-
son. A generic visualization platform for CP. In D. Cohen, editor, Prin-
ciples and Practice of Constraint Programming – CP 2010: 16th Inter-
national Conference, CP 2010, St. Andrews, Scotland, September 6-10,
2010. Proceedings, pages 460–474. Springer Berlin Heidelberg, 2010.

[37] J. Walker, R. Borgo, and M. W. Jones. TimeNotes: A study on effective
chart visualization techniques for time-series data. IEEE Transactions on
Visualization and Computer Graphics, 22(1):549–558, Jan. 2016.

[38] J. Wood. Experiments in bicycle flow animation, 2012. [Accessed on:
2016-03-30].

[39] B. J. Yuen and K. V. Richardson. Establishing the optimality of sequenc-
ing heuristics for cutting stock problems. European Journal of Opera-
tional Research, 84:590–598, 1995.

http://contraintes.inria.fr/OADymPPaC

	Introduction
	Context and Related Work
	Gathering Requirements
	Questionnaire
	Creativity Workshop
	Summary and Prioritisation

	Detailed Context
	Solvers
	Statistics

	Case Studies
	Case Study 1: Addition Chain
	Case Study 2: Power Graph Decomposition
	Case Study 3: Vehicle Routing
	Design Recommendations and Participant Feedback

	Conclusions and Future Work

