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Fig. 1: Grid systems in typographic layout, UI design and an example of our proposed grid layout for a power-graph. With graphic
designers playing an increasing role in the design of user interfaces for phone, tablet and desktop operating systems, this traditional
grid-based design aesthetic is becoming more popular in these media. A case in point is Microsoft’s “Modern” interface which
seeks to unify app-design across devices. This resurgence of the grid-design aesthetic in new media leads us to re-examine some
of the aesthetic assumptions that have been made in designing layout methods for network diagrams.

Abstract— Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines
for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical
results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these
techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution
of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost
universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived,
generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second
contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for
graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach
that is scalable to larger networks.

Index Terms—Network visualization, graph drawing, power graph, optimization, large-neighborhood search

1 INTRODUCTION

Computer science researchers (and others) have been exploring dif-
ferent ways to automatically layout and draw diagrams that represent
graphs or networks for many decades. Because of the difficulty of
the network layout problem and limited computational power of early
computers, the primary focus was on developing fast heuristic tech-
niques with low time complexity. As computer power rapidly in-
creased through the ‘90s and 2000s, many researchers continued to
focus on fast heuristic techniques in a race to see who could untangle
the biggest graphs.

Other research led to the development of complex multi-stage lay-
out frameworks for higher quality layout of smaller networks. For
example, a seminal paper by Batini et al. [11] proposed a multi-stage
layout framework called Topology-Shape-Metrics (TSM) which led to
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the development of orthogonal graph-drawing techniques which were
designed to produce drawings with orthogonal connectors. Another
family of multi-stage approaches arose following Sugiyama et al. [47],
specifically for layered-layout of directed graphs.

One feature common to the layouts produced by all of these differ-
ent algorithms for network layout is the use of white space to clearly
separate nodes and an implicit visual emphasis on edges rather than
nodes. This leads to relatively sparse layouts in which most of the
display space is empty. The main contribution of this paper is to in-
vestigate a new network layout aesthetic based on ultra-compact grid
layout.

This new aesthetic is motivated by the grid arrangements that are
used almost universally by designers in typographical layout, and are
increasingly common in other media such as computer interfaces (Fig.
1). Layout in this tradition is built upon a grid that divides the view-
ing space into regular cells. Individual elements may span grid-cells
but—as much as possible—the grid subdivisions are respected. This
approach provides a regularity to the layout that leads the eye in a fa-
miliar and comfortable way [37]. Recent studies of network layout
have shown that grid arrangements are memorable [35], when peo-
ple arrange small diagrams themselves they prefer to place nodes at
grid-points [42] and such placements are also preferred to TSM-based
orthogonal layout [29].

As we have mentioned, TSM-based orthogonal layout techniques
were also influenced by a grid-aesthetic, though probably more due to



(a) A traditional TSM-based orthogonal layout of the flat network.

(b) We can use power-graph like compartments to reduce the number of edges.
A lot more structure is visible in this edge-compressed version of the graph from
2(a). For example, the outermost compartment makes it obvious that all states
apart from “starting state” are cancellable, i.e. have a link to “trip cancelled”.
However, this TSM-based orthogonal layout still takes quite a large area. If
coerced to a grid the dimensions would be 6×7, leaving 29 empty grid-cells.

(c) Here is the same state-machine shown using our ultra-compact grid-based
layout which has grid dimensions 4×4 leaving only three empty grid-cells. This
optimally compact solution was found in 0.464 seconds using the SAT solver.
Although we do not explicitly minimise bends or crossings, our layout is equal
to the TSM output in these respects and significantly reduces the overall area and
edge-length. With the additional node area we are able to include more detailed
descriptions of each state.

Fig. 2: Drawings of the state machine for a travel-booking system.

Fig. 3: An Euler diagram showing the intersecting sets of interests of
researchers in a lab (anonymised). Solved in 0.047 seconds using the
SAT solver.

circuit layout traditions than typography. As Fig. 2 shows, our new
aesthetic leads to a very different visual style. It uses ultra-compact
arrangement on a grid with group membership shown by containment
in nested rectangular regions. This containment then enables the use
of the power-graph convention [45] to collapse edges. In such an edge-
compressed view [17] an edge from a group to another group implies
all nodes in the first group are connected to all nodes in the second.
Unlike virtually all existing approaches to power-graphs or network
diagrams with clustering, we do not require that groups are hierarchi-
cal, making our approach applicable to other types of diagrams such
as representations of overlapping set-membership (Fig. 3).

After exploring grid-design, this paper’s second contribution is to
investigate practical methods for producing ultra-compact grid lay-
out that is of the highest-possible quality. Rather than developing
a specialised algorithm we decided to explore more general purpose
optimisation based approaches. One reason for this is that current
frameworks for high-quality network layout separate the layout into
a pipeline of different steps and so, the resulting layouts are often
compromised because of the fixed trade-off between aesthetic criteria
imposed by the pipeline. Furthermore the implementations of these
methods are complex and brittle, as discussed in Sect. 6.

Since the time when pipe-line-based graph-layout methods such as
TSM were conceived, generic technologies for solving combinatorial
and mixed-integer optimization problems have improved by several or-
ders of magnitude. Simultaneously, the computing power available on
average desktop machines has increased exponentially. Optimisation
problems that once took weeks to solve with home-sized computers
can now be solved in seconds on cheap computers in the home.

We feel then, that the time is right to reassess network layout and see
whether these general purpose optimization techniques can be usefully
applied to solve simple mathematical models encoding such layout
problems. One advantage of using such a generic approach is that
it allows us to readily explore this new aesthetic by allowing us to
rapidly create examples from different applications and with different
aesthetic trade-offs (Sect. 2).

Thus, after developing a model for ultra-compact grid layout (Sect.
3), we compare the applicability of several generic optimisation tech-
niques (MIP, CP and SAT) to this problem (Sect. 4). While useful
for exploring the design of the layout model, we found that even the
best of these solving technique was only practical (in terms of running
time) for graphs of up to around 50 nodes.

A common fallback for solving difficult combinatorial optimisa-
tion problems is to use generic meta-heuristic techniques like tabu
search, simulated annealing or genetic programming. Dozens of dif-
ferent techniques have been proposed. While not guaranteed to find
an optimal solution they are routinely used to find “good” solutions to
problems that are too hard to solve optimally using MIP, CP or SAT.
We therefore developed a meta-heuristic to solve our layout problem.

We decided to use large neighbourhood search (LNS) [8,
41](Sect. 5). This class of meta-heuristic is currently de rigueur for
solving various transportation and scheduling problems. While we are
not the first to try generic meta-heuristic approaches for network lay-
out we are the first to consider LNS. Though not guaranteed to find an



optimally compact solution our evaluation shows that our LNS heuris-
tic found reasonably good layouts (when compared to the optimal lay-
out) and scaled to graphs with 100 nodes.

In summary, the technical contributions of this paper are to:
- Introduce a new ultra-compact grid-based aesthetic for network lay-
out and explore the design-space (Section 2);
- Present a declarative model of layout goals and constraints that al-
lows us to rapidly evaluate different refinements and applications of
these aesthetic criteria, solvable using generic constrained optimisa-
tion techniques and without the need for specialised algorithm devel-
opment (Sect. 3);
- Compare the efficiency of different generic optimisation techniques
(MIP, CP, SAT) for solving our declarative model (Sect. 4);
- Explore the use of a large-neighborhood-search based meta-heuristic
to solve this declarative model. This allowed us to obtain compact grid
layouts for graphs of up to 100 nodes in less than 5 minutes (Sect. 5).

2 ULTRA-COMPACT GRID LAYOUT

In this section we present a new layout aesthetic for network diagrams
that is based on grid layout in typography and we provide a number of
motivating examples. The aesthetic incorporates the following layout
requirements:
R1 – Node content emphasis. Many applications have more than
just simple labels associated with nodes, for example, rich graphics or
text in paragraph or tabular form. In typography, grid-cells are packed
quite densely in order to maximize the area devoted to this content.
By contrast, orthogonal network diagram layouts are typically very
sparse, devoting more space for edge paths, which—in order to min-
imize bends and crossings—may be very long. Networks featured in
Figs. 1, 4, 5(b) and 6 all contain significant text and graphic content
associated with each of the nodes. For this detail to remain readable
at reasonable scales without resorting to interactive focus-and-context
techniques (e.g. [27]), compact node-placement is essential. A strong
correllation between human preference and layout compactness is also
observed in a recent study by Kieffer et al. [29].
R2 – Proximity implies connectivity. If we are to devote less space
to edge paths in our grid arrangements then we must rely more on
the proximity of nodes to indicate connectivity. Recent studies have
shown that layout that achieves such proximity is strongly preferred
by readers of small diagrams [19]. In addition, this objective indi-
rectly addresses crossings simply because shorter edges are less likely
to cross. Minimizing edge-length can sometimes be a more success-
ful strategy for minimizing crossings than heuristics which directly
address crossings, e.g. [18].
R3 – Variable node dimensions. Some nodes may have significantly
more content than others. Following typographical layout conven-
tions, these nodes can be expanded to fit their content, but they must
always fully fill a rectangular set of grid-cells. Furthermore, where dif-
ferent orientations of the node are possible (e.g. picture beside text or
picture below text) the layout should choose the orientation to best suit
the layout. Fig. 4 demonstrates layout with variable node orientations.
R4 – Containment. The semantics of many applications involve rep-
resenting group membership over sets of nodes. In typography, such
relationships are shown through nested rectangular enclosing regions.
R5 – Flow. In applications where the directionality is important we
would like flow to be shown in multiple directions, for example, left-
to-right and top-to-bottom, as in document layout.

Part of the motivation for this work was the search for an effec-
tive layout method for edge-compressed dense, directed networks [17].
Without compression, graphs that have only few nodes but many edges
are already very difficult to read. For example, Fig. 2(a) shows the
state-chart for a travel booking system with 13 nodes and 44 edges
arranged using the commercial layout software, yFiles [7].

Figs. 2(b) and 2(c) show the edge-compressed version of the net-
work with only 17 edges. In the compressed representation, an edge
between two groups implies a biclique. That is, every node contained
in the source group of the edge is the source of an edge to every node
in the target group. Thus, precisely the same connectivity structure is
conveyed but in a less cluttered way. Further, the grouping inferred

Fig. 4: Links between major composers arranged with our model
with the solver choosing the best orientations for nodes. Layout took
37.422 seconds using the SAT solver - disjunctions due to variable
node orientations expand the search space.

by the edge-compression reveals structure, for example, it is obvious
from the single edge adjacent to the largest group and the trip can-
celled state that every state other than start is cancellable.

Figs. 2(b) and 2(c) compare layouts obtained by a standard TSM
approach (yFiles) and by our model. Our layout model here keeps
connected nodes close together (R2) while preserving group contain-
ment within rectangular regions (R4). Furthermore, the layout is as
compact as possible while respecting node and group containments,
thus maximising space for, and hence readability of node labels (R1).
When node area is maximised in this way, we are able to include ad-
ditional explanatory content for each node and the diagram becomes a
more complete, stand-alone description of the state-machine.

Fig. 4 demonstrates the possibility to provide a very compact layout
for a graph with nodes that require more than a single grid-cell to fit
their content (R3). The network is a section of the “Composers Graph"
that was one of the challenges for the 2014 Graph Drawing Conference
contest [1]. Each node is a composer for whom we want to show both
biographical details and a portrait. We allow the textual biographical
details to fill one grid-cell, while the portrait can go in an adjacent
cell, either beside or below the text. The solver automatically chooses
the orientation of each node that permits layout that is optimal with
respect to the other layout requirements.

Fig. 3 is an Euler Diagram representing the research interests of
members of our lab (anonymised). Set labels are also treated as nodes
and laid out within the same grid system. Note that the containment
(R4) is no longer a strict hierarchy yet our general layout model is still
applicable. Drawing Euler diagrams under certain constraints such as
convexity of the regions is not always possible. Actually realising the
drawing in an aesthetic way is a further challenge. Both of these prob-
lems have seen a lot of interest from computer-scientists and mathe-
maticians and sophisticated algorithms have been developed [43, 46].
Here, we have defined the layout for rectangular boxes with a relatively
simple declarative model, and left both the problems of determining
feasibility and (if possible) layout to the solver.

In Fig. 5 we compare two different arrangements of a biological
pathway network. In such pathways the direction of the edges is often
very important, for example, indicating the direction of a reaction. It
is therefore a common convention to show flow in such diagrams from
top-to-bottom or from left-to-right. Fig. 5(a) uses a standard Sugiyama
style [47] layout obtained, again, with yFiles. This method assigns
nodes to layers such that edges exclusively span layers. By contrast,
Fig. 5(b) introduces a disjunction constraint which allows edges to



flow either left-to-right or top-to-bottom.
Fig. 6(b) shows a software-dependency graph. This network shows

dependencies between types, methods and properties in C] code and
was obtained in a debugging scenario using the Visual Studio Code
Map tool. This layout neatly illustrates the cause of the bug: that
Square is the only sub-class of Figure not created by the GetNextFig-
ure method. Code snippets and icons on each of the nodes give added
context, again illustrating the need for node content emphasis (R1).

3 LAYOUT MODEL

In this section we present a high-level declarative model for placing
grouped nodes in a grid layout that formulates the problem as a con-
strained optimisation problem1.

3.1 Node-Placement Model

The high-level model for node-placement takes the following as input:
1. The set of leaf or base nodes B= {1, ...,nB} and the set of container
nodes C = {nB +1, ..,nC} which contain groups of other nodes.
2. A fixed width wu and height hu for every base node u ∈ B. These
are positive integers.
3. Every container node has a set of nodes that are contained inside
it. These can be container or base nodes. This is specified by the
Boolean matrix con[u,v] which is true iff v ∈ B∪C is inside u ∈ C.
The containment relationship need not be hierarchical.
4. The containment relationship gives rise to a non-overlap relation-
ship between nodes. For convenience this is pre-computed and passed
into the model. It is given by the symmetric Boolean matrix disj[u,v]
which is true if u,v ∈ B∪C should not overlap.
5. For each pair of nodes u,v ∈ B∪C there is a non-negative desired
distance dd[u,v] between them with a non-negative weight ddw[u,v].
The weight ddw[u,v] is 0 if u is contained in v or vice versa.
6. A maximum grid size, gx and gy, both of which are positive integers
big enough to ensure that they contain the optimal layout.

Neither con nor disj need to contain redundant constraints: for effi-
ciency they should be minimal.

We experimented with different desired distances and weights. Fol-
lowing stress-based methods [25], we tried setting the desired distance
between two nodes to the graph-theoretic-distance taking into account
containment2. We also tried simply setting the desired distance and
weight to the edge adjacency matrix. Observing similar results for
both approaches, we opted for the latter.
Variables and constraints:
1. The core decision variable in our model is the position (xs[u],ys[u])
of the top-left corner of each base node u ∈ B. This must be a point
on the grid: xs[u] ∈ {1, ...,gx} and ys[u] ∈ {1, ...,gy} where gx and gy
give the size of the grid.
2. The position of the bottom-right corner of each base node is
functionally dependent upon this: ∀u ∈ B, xf [u] = xs[u] + w[u] and
yf [u] = ys[u]+h[u].
3. We require that the whole node fits on the grid: ∀u ∈ B, xf [u] ≤ gx
and yf [u]≤ gy.
4. The position, width, and height of the container nodes are also func-
tionally dependent on the position of the base nodes; as the containers
are just the bounding box of their constituents, so ∀u ∈C,v ∈ B∪C:

xs[u] = min{xs[v] | v ∈ B∪C∧ con[u,v]}
xf [u] = max{xf [v] | v ∈ B∪C∧ con[u,v]}
w[u] = xf [u]− xs[u]

and similar in the y-dimension.
5. The following disjunction ensures that nodes do not overlap: ∀u <
v ∈C s.t. disj[u,v],

xf [u]≤ xs[v]∨ xf [v]≤ xs[u]∨ yf [u]≤ ys[v]∨ yf [v]≤ ys[u].
1The full model in MiniZinc is available under an open-source license [38]
2This is the length of the shortest path between the nodes in an extended

graph where there is an edge between two nodes x,y in this extended graph if
there is an edge in the original graph or if con[x,y] or con[y,x] holds.

Objective function to be minimised: stress + αcc + βoc where α

and β are fixed weights and the functions stress, cc and oc measure
different aesthetic criteria, as follows.

The stress term is the difference between the desired and actual dis-
tance between the nodes. Because we are using orthogonal connectors
and grid layout we use Manhattan distance. We measure the distance
between the closest points on the perimeter of the nodes rather than
between the center of the nodes as this leads to considerably better
layout in the case that the nodes are not squares. To compute this we
use the functionally dependent variables:

dx[u,v] =


xs[v]− xf [u]+1, if xf [u]≤ xs[v]
xs[u]− xf [v]+1, if xf [v]≤ xs[u]
0, otherwise.

We define dy[u,v] symmetrically. Now,

stress = ∑
u,v∈B∪C

ddw[u,v] · |dx[u,v]+dy[u,v]−dd[u,v]| .

The other components of the objective function are designed to en-
sure ∀u∈ B∪C that compartments are compact cc = ∑u∈C w[u]+h[u],
that the entire layout is compact oc ≥ xf [u], and that it fits inside a
rectangle with a given aspect ratio ar: yf [u]≤ ar ·oc.

A great advantage of using a constrained optimisation approach is
that it is straight-forward to add additional constraint encodings based
on additional aesthetic criteria. Thus, for the example presented in
Fig. 4 we add a constraint to dictate a fixed perimeter of size 2x1 for
base nodes; placed either horizontally or vertically. In the flow layout
in Fig. 5 each source node should be either above or to the left of the
destination node — another disjunction. Note that the optimisation
problem that we tackle with our model is NP-hard as can be shown by
reduction from the rectangle packing problem [34].

Initially we tried to use a single constrained optimisation model
for both node-placement and edge routing. This modelled each edge
using a fixed number of horizontal and vertical segments (some of
which could be 0 length) and including a penalty term for each pair
of segments to penalize possible edge crossings. However, this proved
too slow for any but very small networks and so is currently still not
practical. We therefore developed a separate heuristic algorithm for
edge routing given the positions of the nodes on a grid.

3.2 Routing

The grid-aesthetic naturally suggests routing connectors between base
and container nodes in an orthogonal-style, i.e. with straight-line seg-
ments aligned to the grid. Obviously, intersections between these or-
thogonal edge paths and node boundaries (other than the source/target
of the edge) should be avoided. Edge paths should only intersect con-
tainer boundary rectangles if the container is the source or target, or is
an ancestor of the source or target.

Currently the standard for orthogonal connector routing is to route
over an orthogonal visibility graph, followed by a “nudging" phase
to centre edge segments in channels between nodes [49]. Strict grid
placement of nodes simplifies this problem considerably as we can
route over the graph formed by the grid itself, intersected with the cen-
tre lines between each column and row of nodes, see Fig. 6. When we
route an individual edge, we remove any edge segments which inter-
sect nodes other than the start and end nodes, or segments intersecting
containers which are not ancestors of the start and end nodes.

We also connect ports on the start and end nodes to each other.
These port connections have zero cost in the subsequent shortest path
finding problem between the start and end nodes. Thus, the short-
est path will always run through the ports providing the shortest path
between source and target. Otherwise, the cost of traversing each seg-
ment in the shortest path traversal (Dijkstra) is simply the length of
that segment plus an additional penalty if traversing the edge would
add a bend to the current path.

Finally, bundles of co-linear edge segments are constructed and an
ordering within bundles that avoids unnecessary crossings is found
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(a) Sugiyama style layered-layout with six layers and flow direction
strictly left-to-right.

(b) Compact grid layout obtained with relaxed flow direction;
solved in 2.035 seconds using the SAT solver.

Fig. 5: A directed biological pathway from http://www.pathwaycommons.org.

as suggested by Nöllenburg [39]. This ordering is used to generate
constraints for a simple quadratic program subject to separation con-
straints (with solution as per [20]) to neatly space the edge segments
in the available channels.

4 OPTIMAL NODE-PLACEMENT

The declarative model is a complete and precise mathematical for-
mulation of the node-placement problem. In this section we evaluate
three of the most widely-used generic techniques for solving such dis-
crete constrained optimisation problems: Mixed-Integer Programming
(MIP), SAT, and constraint programming (CP). These are all guaran-
teed to find an optimal solution to the problem. In this section we
detail the exact encodings used as well as the experimental evaluation.

4.1 Constraint Programming

Subject to minor syntactic changes the model given in Sect. 3 is a
MiniZinc [38] model. The actual MiniZinc is shown in Appendix A.
Thus it can be directly executed and solved using any of the underlying
solvers supported by MiniZinc.

For our evaluation we used a state-of-the-art constraint program-
ming solver, G12 CPX [23] which utilises lazy clause generation. CPX
like most constraint programming solvers provides global constraints
for finding the minimum and maximum elements in a list or array, a
predicate or function to compute the absolute value of a function and
disjunctions of constraints. The calculation of distance between two
nodes u, v in a given dimension was encoded as the expression

dx[u,v] = max([0,xs[v]− xf [u]+1,xs[u]− xf [v]+1])

4.2 SAT

SAT solvers are designed to find values for Boolean variables that
satisfy conjunctions of clauses, i.e. disjunctions of Boolean literals.
When encoding an integer problem into SAT, each integer variable x∈
[1, . . . ,n] is usually encoded as a set of Boolean variables [x1, . . . ,xn].
There are two standard encodings for integer variables with small do-
mains.

The sparse encoding requires that exactly one of the n variables is
true; this gives the semantics

xi ≡ [[x = i]]

where this is read as the Boolean variable xi in the encoded SAT model
is true iff x = i holds in the original integer programming model. The
direct encoding of this semantic requires O(n2) clauses, since in addi-
tion to the set of disjunctions that ensure that at least one is true, it also
requires an encoding that ensures that at most one value holds. Each
pair of distinct values (i, j) requires a disjunction. There are n(n−1)/2
such pairs, resulting in 1+n(n−1)/2 clauses.

The alternative unary encoding of integer variables instead ensures
that the xi are ordered; that is, xi⇒ xi−1. These literals then have the
semantics

xi ≡ [[x≥ i]].

In addition to requiring only O(n) clauses, the unary encoding is con-
venient for encoding a range of arithmetic constraints.

Example 1 Using the unary encoding, x≤ y can be encoded as∧
i
[[x≥ i]]→ [[y≥ i]]≡

∧
i
¬xi∨ yi.

Example 2 Using the unary encoding, x = |y| can be encoded as∧
i≥0

[[x≥ i]]↔ ([[y≥ i]]∨ [[y≤−i]])≡
∧
i≥0

xi↔ (yi∨¬y1−i).

Example 3 x = max(y1, . . . ,yn) can be encoded as:∧
i
([[x≥ i]]↔

∨
j
[[y j ≥ i]])≡

∧
i
(xi↔

∨
j

yi
j).

Because of these advantages we use the unary encoding. Linear
arithmetic constraints, such as x = ∑ciyi can be implemented using a
range of encodings, such as BDDs, adders or cardinality networks [9,
15, 22].

Reified versions of these constraints can also be easily constructed.
A reified constraint is of form b↔C and constrains the Boolean b to
be true iff the constraint C holds in the model. Reification is a standard
technique used to encode disjunctions of constraints: the disjunction
C1∨C2 is encoded as

(b1↔C1)∧ (b2↔C2)∧ (b1∨b2).

Given these primitives, we can straightforwardly encode the model
into SAT. For example, the non-overlap of nodes u and v becomes:

(bleft ∨bright ∨babove∨bbelow)
∧ bleft↔ xf [u]≤ xs[v]
∧ bright↔ xf [v]≤ xs[u]
∧ babove↔ yf [u]≤ ys[v]
∧ bbelow↔ yf [v]≤ ys[u]


The encoding of the problem into SAT was performed using the

Ben-Gurion University Equi-Propagation Encoder (BEE) [36], which
compiles a declarative specification to SAT.

Primitive arithmetic constraints are encoded using direct unary
adders; whereas, larger sums, such as the objective value, are encoded
with odd-even sorting networks.



(a) Detail of routing graph. The example shows an edge being routed from
“DrawPreview” to “Figure”. Nodes with thick borders are obstacles to be
avoided by the current path. Segments intersecting such nodes are removed
from the routing graph. On the source and target nodes 0-cost port connec-
tions are visible.

(b) After routing, edge paths are bundled and separated within the available
channel space.

Fig. 6: An example software-dependency graph with routing detail
and the final result. Solved in 0.732 seconds with the SAT solver. This
network shows dependencies between types, methods and properties
in C] code and was obtained in a debugging scenario using the Visual
Studio Code Map tool. This layout neatly illustrates the cause of the
bug: that Square is the only sub-class of Figure not created by the
GetNextFigure method. Code snippets and icons on each of the nodes
give added context.

The optimization is handled by solving a sequence of SAT in-
stances. The solver initially solves the problem P and returns a so-
lution o = k. Then it adds the constraint (o < k) to the model and
solves again. This is repeated until the resulting problem is found to
be unsatisfiable. Hence the last solution found is optimal.

4.3 MIP

The MIP encoding is the most complex among the approaches we
compare. We use the standard MIP encoding of minimum and max-
imum and absolute value [48]. We used six matrices of binary vari-
ables to keep track of the relative position of each pair of vertices
u,v. The arrays left[u,v], xoverlap[u,v], right[u,v] encode that u must
be to the left, horizontally overlap, or must be to the right of v;
and analogously in the y direction we have below[u,v], yoverlap[u,v],
above[u,v]. The following constraint enforces the desired relation-
ships in the x-direction, a similar constraint is used for the y-direction:

∀u < v ∈ B∪C

lt(x f [u],xs[v], left[u,v])∧ lt(x f [v],xs[u],right[u,v]) ∧
lt(xs[u],x f [v],xoverlap[u,v])∧ lt(xs[v],x f [u],xoverlap[u,v])

where lt(x1,x2,b) enforces that b→ x1 ≤ x2 and has the standard MIP
encoding −M ∗ (1−b)+ x1 ≤ x2 where M is sufficiently large.

Using these it is simple to encode non-overlap and compute the
distance between nodes:

1. The relative positions are mutually exclusive in each direction:
∀u < v ∈ B∪C,

(left[u,v]+ xoverlap[u,v]+ right[u,v] = 1) ∧
(above[u,v]+ yoverlap[u,v]+below[u,v] = 1)

2. If there is a containment relationship between two nodes then they
overlap in both directions: ∀u < v ∈ B∪C s.t. con[u,v]∨ con[v,u]
then xoverlap[u,v] = 1∧ yoverlap[u,v] = 1.

3. Enforce non-overlap: ∀u < v ∈ B∪C s.t. dis j[u,v],

left[u,v]+ right[u,v]+above[u,v]+below[u,v]≥ 1

4. Compute x-distance: ∀u < v ∈ B∪C we have:

(dx[u,v]≥ 0.0)∧ (dx[u,v]≥ xs[v]− x f [u]+1) ∧
(dx[u,v]≥ xs[u]− x f [v]+1)

and: lt(dx[u,v],0.0,xoverlap[u,v]) ∧
lt(dx[u,v],(xs[v]− x f [u]+1), left[u,v]) ∧
lt(dx[u,v],(xs[u]− x f [v]+1),right[u,v])

and similarly for the y-direction.

We used MiniZinc to encode our MIP model and ran it using the
state-of-the-art CPlex MIP solver [2] by using the flatzinc compatible
CPlex interface.

4.4 Evaluation

In order to study the performance of our model encodings for CP, MIP
and SAT on different graph characteristics we ran experiments on dif-
ferent types of input graphs. Experiments were run on a standard desk-
top machine with an Intel Core i7-4771 3.50GHz processor and 32GB
RAM. Solvers were restricted to run on a single thread with a time-
out of 300 seconds. The results were drawn using HTML5, javascript,
D3.js [3] and Cola.js [6].

Our graph corpus consists of graphs from two sources, a set of ran-
domly generated scale-free graphs, and a set of graphs derived from
real-world instances. For the latter set, we use a selection of 100
graphs from the well-established Rome graph set [5], as already used
in [28]. This sample contains 10 graphs from each group of graphs
with sizes |nodes|= 10,20, . . . ,100 and covers the Rome set well [28].
Density (|edges|/|nodes|) ranges from tree-like (∼ 1) to quite dense
(1.61). We generated the flat scale-free graphs based on the model
proposed by Bollobás et al. [17], with 10 graphs for each graph size
from 7 to 100 nodes. In these generated graphs we controlled for edge
density such that |edges|/|nodes| is up to 1.22. Our decision to use
scale-free graphs is motivated by the fact that scale-freeness is often
observed in graphs stemming from important application areas like
biology and the social sciences. To obtain a grouping for each of
these graphs an edge-compression heuristic [21] was applied. Thus,
our full corpus consists of 940 flat-graphs, 100 Rome graphs, and the
corresponding 1040 grouped graphs, called power-graphs. We then
attempted to obtain a layout for each graph using our MIP, CP and
SAT

For our experiments, the components of the objective function were
weighed in the following order. The stress component was given a
weight of four, the compartment compactness was given a weight of



flat-graphs

power-graphs

Fig. 7: Median solve times for flat-graphs (top) and power-graphs (bot-
tom). Filled marks represent instances for which optimal results were
found in under 5 minutes. Hollow marks indicate not all instances
were solved in that time. Size of the marks indicate number of in-
stances solved.

two (α = 1/2), and the entire layout compactness was given a weight
of three (β = 3/4). These values yielded the most desirable results,
and can be modified to fit the needs and expectations of the users.

Running the solvers on dense power-graphs of different sizes
showed that the SAT solver was able to solve graphs of larger sizes,
while CP and MIP solvers were slower. Fig. 7 shows the median run-
ning time for all graphs up to the largest solved instance with 57 nodes.
The results of Fig. 7 are presented in Table 1. While these results
tend to favor SAT over MIP we cannot say definitively under what
conditions such layout models are better suited to one solver over the
other. Our intuition here is that SAT is typically well suited to prob-
lems with small variable domains and highly disjunctive constraints,
whereas MIP can handle large domains gracefully only when a linear
relaxation gives a good approximation to disjunctions.

powergraph flatgraph
<3s <1m <5m <3s <1m <5m

MIP 7 9 11 7 9 11
CP 15 16 25 13 16 25
SAT 25 38 57 18 24 36

Table 1: The highest nodes count of graphs solved by MIP, CP, and
SAT; categorized into three timeframes. It is clear that SAT performed
best, followed by CP, with MIP having the worst performance for both
power-graphs and flat-graphs.

5 HEURISTIC FOR LARGER NETWORKS

The results presented in Sect. 4.4 indicate that SAT may be used to
find optimal ultra-compact grid layout for small grouped graphs reli-
ably in around a second, which may be suitable—for example—for a
web-service. It can be argued that interactive visualizations of small
neighborhoods are useful in exploring very large graphs, through fil-
tering or semantic zooming that restricts the view to a subgraph or
aggregated overview. Still, being able to reliably visualize networks
with hundreds of nodes gives a lot more flexibility.

We use large neighbourhood search (LNS), a class of meta-
heuristics methods are currently the method of choice for solving var-

power-graphs

flat-graphs

Fig. 8: Average quality of objective obtained with the Large Neigh-
bourhood Search (LNS) heuristic and the starting layout computed us-
ing Force-Directed Grid-Snap (FDGS) compared to the optimal ob-
jective for flat-graphs (top) and power-graphs (bottom). This is shown
with respect to graph size.

ious transportation and scheduling problems. The basic approach is to
explore a large neighbourhood around the current solution and itera-
tively move to a high-quality neighbouring solution until no improve-
ment is possible. One way in which the search can be done is to use
a generic constrained optimisation technique to search the neighbour-
hood for the best solution. This guarantees that the search only finds
solutions that respect the problem constraints. This is why we decided
to use LNS; with other meta-heuristic techniques like simulated an-
nealing it would have been difficult to ensure that the containment and
non-overlap constraints were satisfied during the search.

The LNS heuristic is intuitively simple: find an initial solution and
then iteratively improve it by choosing a set of nodes for improve-
ment. The space of their possible positions forms the neighbourhood
for the search. Their new position is found by using MIP to solve
the model given in Section 3 with some additional constraints fixing
the relative position of the other nodes. The reason that we used MIP
is that while MIP was slower than both CP and SAT for solving the
original model we found that it was the fastest method for solving this
more constrained subproblem. We believe this is for two reasons. The
first is that the addition of relative position constraints removes most
of the disjunctions from the model so that the linear relaxation gives
a good approximation to the underlying problem. The second is that
MIP solvers such as Cplex support warm start when solving similar
problems. Algorithm 1 gives an overview of our heuristic.

The first step is to find an initial layout for the grouped network
with a constraint-based force-directed approach. We implemented the
“grid-snap” technique described by Kieffer et al. [30] in the cola.js
[6] browser-based constraint-layout library. We extended this method
to handle group-hierarchy containment inside rectangular regions us-
ing separation constraints as described in [18]. The layout obtained
by this heuristic Force-Directed Grid Snap (FDGS) approach for a 45-
node graph is shown in Fig. 11(a).

From this initial layout two types of additional constraints are added
to the model (Sect. 3) to massively reduce the search space. First, we
generate inequality constraints over the x- and y-positions for pairs of
nodes (Fig. 9) locking their horizontal and vertical order. To allow
the solver to move a neighbourhood of nodes these constraints are se-



Algorithm 1 Grid Layout Heuristic
1: procedure GRID LAYOUT ( Graph g, Model m )
2: l← getForceDirectedLayoutWithGridSnap(g)
3: d← getDataWithTightConstraints(l)
4: SolverLoad(m,d)
5: b← 10, c← nil, t← |B|/5 seconds
6: for each c← getNextNodeOrContainer(g,c) do
7: relaxOrderingConstraints(c)
8: δ← δ ∪ getContainedNodes(c)
9: lc1← getFreeLeavesDirectlyConnected(c)

10: δ← δ ∪ lc1
11: δ← δ ∪ getFreeLeavesDirectlyConnected(lc1)
12: δ← δ ∪ getContainedLeavesDirectlyConnected(c)
13: relaxUpTo_b_nodes(δ,b)
14: val← runCPLEXsolver(timeout=t)
15: setWarmStart(val)
16: updateConstraints(val)
17: end for
18: for each leaves← getUpTo(FreeLeaves(g), b) do
19: relax(leaves)
20: repeat 12-15
21: end for
22: return val
23: end procedure
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(a) Horizontal ordering constraints
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Fig. 9: Constraints types derived from the grid-snap layout to be added
to the layout model. Ordering constraints for the pairwise relative po-
sitions between nodes in x and y dimension are added for all nodes
pairs. (a) shows the horizontal ordering constraints for node 3, which
restrict its x position to be less or equal to those of 6 and 10, and larger
or equal than those of 9, 5, and 2. The constraints for the y position
are obtained in the same way. (b) shows the edge-length constraints
for node 3, in this case all distances to adjacent nodes have bound 1.
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(a) Starting layout: container
A is selected for neighborhood
detection. Nodes with a blue
fill are selected for relaxation.
This includes the nodes con-
tained in A, nodes 2 and 7 as
directly connected free leaves,
and node 3 as directly con-
nected contained node.
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(b) Result: Nodes moved to a new posi-
tion are highlighted with red outline. Node
3 was repositioned within container B, de-
creasing the container size, and container
A was assigned a more horizontal shape,
allowing the drawing to fit into a much
smaller grid, moving all relaxed nodes. The
length of the edge between nodes 4 and 7
was decreased from 4 to 3. Grid size has
been reduced from 5x5 to 5x3.

Fig. 10: A step in the Large-Neighborhood-Search heuristic.

lectively relaxed, as described below. Additional constraints on edge-
length further restrict the search to only equal or shorter edges. This is
done by bounding the manhattan distance between adjacent nodes by
their manhattan separation from the FDGS layout.

In order to obtain improvements in reasonable time, we iteratively
relax the ordering constraints for a subset δ of nodes and run the solver
on this relaxed model. New ordering constraints for the nodes in δ and
potentially tightened bounds on the edge-lengths are derived from the
resulting layout and added to the model for the next iteration, where
a solver warmstart is used to speed up the computation. The relax-
ation is divided into two main parts, represented by the for loops in
Algorithm 1, lines 6 and 18. The first part processes neighborhoods
of nodes, the second is a postprocessing to find the best placement for
free leaves, i.e. leaf nodes not contained in any other node.

In each iteration of part one the selection of nodes for relaxation
is as follows: first, we select a node c, whose neighborhood will be
relaxed, to be included in δ (Function getNextNodeOrContainer in Al-
gorithm 1). In case there are contained nodes, we first simply pick c
from the list of containers ordered by size, i.e. the largest container in
the first iteration, followed by the second largest, and so on. Otherwise
we consider each node as an empty container, and in each iteration se-
lect one of them, in random order. We now add further nodes to δ up
to a small bound b on the size of δ. In our implementation b = 10 gave
a good tradeoff between running time and quality improvement. First,
we randomly select up to b nodes in c. If c has fewer nodes than b, we
add further nodes in the following order until |δ| = b: The group lc1
of free leaves that are adjacent to c. The group of free leaves that are
adjacent to nodes in lc1. Contained leaf nodes adjacent to c.

After relaxing the ordering constraints for the nodes in δ, we run the
solver for a limited time t. Fig. 10 illustrates such a step of the heuris-
tic. We choose t = |B|/5 such that the total run-time for the algorithm
is always bounded proportionally to the size of the graph. The result
is used to initialize the next iteration and the solver warmstart.

We iterate until each container (or each node in case there are no
containers) has been selected once (for-loop at Line 6 of Alg. 1). Af-
terwards, we relax sets of free leaves independent of a container, and
rerun the solver, until all free leaves have been relaxed once (for-loop
at Line 18 of Algorithm 1). The final layout is shown in Fig. 11(b).

We evaluated the LNS heuristic on our graph corpus. The reduction
in search space leads to significantly faster solves as can be seen in
Fig. 7. Fig. 8 compares the layout quality of LNS and FDGS with the
optimal as obtained by SAT. Across all graphs in our corpus the mean
quality ratio for FDGS was ∼ 1.24 while for LNS it was ∼ 1.1, i.e.
LNS was typically twice as close to the optimal as FDGS. Visually,
FDGS gives a much less compact layout with a significantly larger
total edge length compared to layout refined by LNS as evidenced by
the side-by-side comparisons in Figs. 11 and 12 3.

6 RELATED WORK

The most widely-used family of automatic layout methods for undi-
rected graphs are based on force-directed layout [32]. These methods
iteratively place nodes such that edge-lengths become relatively uni-
form while disconnected nodes are spaced further apart. This approach
is attractive because the basic variants are easy to implement, it does a
reasonable job of untangling the structure of small graphs and cluster-
ing nodes so that proximity implies connectivity (R2). However, the
results are very organic – the antithesis of grid layout.

Rohrschneider et al. tried to overcome that problem for biological
networks by first computing a stress-based node-placement on a grid,
followed by an edge routing heuristic [44]. This approach does not
allow group information to be taken into account, and the graph struc-
ture is hard to conceive from the layouts. Recent work from Kieffer et
al. [30] explored augmenting the objective function of a constrained-
force-directed technique to prefer nodes placed at grid-points, thereby
creating a compromise between a grid-aesthetic and R2. This method
(extended to grouped graphs) provides the starting point for our LNS.

3More examples highlighting the difference in quality between FDGS lay-
out and that obtained by FDGS with LNS refinement are available online [4].
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(a) Left: Force-directed layout with containment. Right: Force-directed layout
with grid-snap. Solve time: 2.2 seconds. Grid size: 10x11. Total Edge Length:
33. Edge Crossings: 4. Objective 35.89% higher than optimum. The first neigh-
bourhood considered by the LNS search is highlighted.
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(b) LNS outcome. Highlighted nodes
are the last neighbourhood with relaxed
constraints, the node with pink outline
was the only one moved by the solver.
Solve time: 43 seconds. Grid size: 9x8.
Total Edge Length: 29. Crossings: 4.
Objective 17.94% higher than optimum.
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(c) Optimum. Only one edge has
more than unit length. Grid size
is optimal at 7x7. Total Edge
Length: 25. Crossings: 0. Solved
by SAT in 99.2 seconds.

Fig. 11: A network with 45 nodes arranged in four ways: the force-
directed approach that forms the basis of our LNS approach; the grid-
snap approach that allows us to derive the constraints for the LNS
approach; the final outcome of the LNS approach; the final optimal
outcome of the SAT.

A layout exploration in the specific domain of Metro-map layout
from Nöllenburg and Wolff [40] was similar to ours in spirit in its
attempt to obtain high-quality layout through the use of optimal (MIP)
techniques. However, the metro-map layout problem is significantly
constrained in that the topology is already given by the geographical
positions of the stations. As a layout adjustment problem rather than
completely free arrangement of nodes, it is therefore more similar in
terms of tractability to the LNS approach explored in Sect. 5.

Orthogonal layout approaches seek to represent edges with axis-
parallel segments, preferably with only a small number of right-angle
bends. From the approaches that were proposed, the planarisation-
based Topology-Shape-Metrics (TSM) framework [11] has proven to
be by far the most successful in practice. TSM first fixes an embedding
for the planarized input graph, then solves bend minimization for this
embedding to achieve an orthogonal shape, and in the final compaction
step computes node positions for this shape.

However TSM has limitations that inspire the work presented in
this paper: Primacy is given to minimizing edge crossings, prohibit-
ing a good compromise between aesthetic criteria, and even optimal
solutions for a single phase (e.g. calculated using ILP, MIP or SAT
strategies [12,24,31]), will generally not lead to a solution close to the
optimum with respect to all optimisation criteria, see Fig. 2(a). Or-
thogonal methods also typically do a poor job of handling nodes of
widely varying dimensions, and they are difficult to extend for main
constraints in applications, in particular grouping of nodes and flow di-
rection. An exploration of applying optimal methods (ILP and SAT) to
particular graph-theoretical problems related to orthogonal-drawings
was considered by Biedl et al. [14] but their results are not readily
applicable to practical layout. Betz et al. [13] integrate upward cross-
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(a) Force-directed layout with grid-snap.
Grid size: 16x14. Total Edge Length: 138.
Crossings: 52. Solve time: 14.4 seconds.
The first neighbourhood considered by the
LNS search is highlighted.
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(b) LNS. Highlighted nodes are
the last neighbourhood with re-
laxed constraints, the node with
pink outline was the only one
moved by the solver. Grid size:
13x14. Total Edge Length: 135.
Crossings: 50. Solve time: 348
seconds.

Fig. 12: A network with 100 nodes.

ing minimization into a TSM approach to support non-uniform node
heights for layouts of directed graphs.

A number of other researchers have investigated the use of meta-
heuristic approaches to graph layout. Davidson and Harel [16] in-
vestigated the use of simulated annealing (SA) for undirected graphs.
Harel and Sardas [26] used SA to beautify a layout drawn with a
planarisation-based approach. Barsky et al. [10] and Kojima et al. [33]
propose methods based on SA and local-search (respectively) for bio-
logical networks. The work of Barsky et al. is the most similar because
they layout the nodes on a grid, however the layout is not particularly
compact and does not use rectangular compartments. To our knowl-
edge, ours is the first use of LNS in graph layout.

7 CONCLUSION AND FURTHER WORK

We have introduced a new ultra-compact, grid-like layout aesthetic for
node-link diagrams with arbitrary containment that is motivated by
the grid arrangements that are used almost universally by designers in
typographical layout. We have explored whether generic constrained
optimisation techniques (MIP, CP and SAT) are now fast enough to be
used for high-quality drawings of this kind. We found that SAT was the
most effective, and quite practical for producing high-quality layouts
for graphs of up to 20 nodes in under a second - useful, for example
in interactive contexts where it is possible to obtain an aggregated or
partial view of a larger network and graphs of up to 50 nodes in a few
minutes may be useful for producing canonical offline views.

Although this paper is about solving a set of models for network
layout to optimality, it is open for debate whether our particular model
represents the “best possible visualisation” and we do not claim this.
Rather, this is precisely the point of this paper: by rapidly modeling
different types of layout through declarative techniques we are able to
rapidly experiment with different approaches to the layout problem. A
number of the ideas for layout presented here (e.g. reorientable nodes,
ultra-compactness, multi-directional flow layout; all while respecting
arbitrary group containments) are to our knowledge very novel and
very difficult to experiment with by any other means.

Another use of the optimal techniques, however, is in finding a base-
line against which approximate methods may be compared to assess
quality. This was demonstrated in our evaluation of the LNS meta-
heuristic approach. Our evaluation showed that the LNS method could
produce compact layouts for graphs with up to 100 nodes in a few min-
utes that are usually within 20% of the objective function’s optimum.

In general, the ease of experimenting with different layouts through
simple edits to the declarative model opens up a world of possibilities
that we hope to explore in future before embarking on engineering
faster heuristics. A significant open challenge is a layout model that



somehow incorporates routing in a way that is efficiently solvable to
optimality. To us, this remains the “holy grail”.
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